
General Chemistry: Principles and Modern Applications (11th Edition)
11th Edition
ISBN: 9780132931281
Author: Ralph H. Petrucci, F. Geoffrey Herring, Jeffry D. Madura, Carey Bissonnette
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 67IAE
Interpretation Introduction
Interpretation:
Fraction of water that must be evaporated before CaSO4(s) begins to precipitate should be determined.
Concept introduction:
When a solid is dissolved in the aqueous solution, its equilibrium constant is equal to the solubility product constant,
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
6. The equilibrium constant for the reaction
2 HBr (g)
→ H2(g) + Br2(g)
Can be expressed by the empirical formula
11790 K
In K-6.375 + 0.6415 In(T K-¹)
-
T
Use this formula to determine A,H as a function of temperature. Calculate A,-H at 25 °C and at
100 °C.
3. Nitrosyl chloride, NOCI, decomposes according to
2 NOCI (g) → 2 NO(g)
+ Cl2(g)
Assuming that we start with no moles of NOCl (g) and no NO(g) or Cl2(g), derive an expression
for Kp in terms of the equilibrium value of the extent of reaction, Seq, and the pressure, P.
Given that K₂ = 2.00 × 10-4, calculate Seq/
of
29/no when P = 0.080 bar. What is the new value
по
ƒª/ at equilibrium when P = 0.160 bar? Is this result in accord with Le Châtelier's
Principle?
Consider the following chemical equilibrium:
2SO2(g) + O2(g) = 2SO3(g)
•
Write the equilibrium constant expression for this reaction.
Now compare it to the equilibrium constant expression for the related reaction:
•
.
1
SO2(g) + O2(g) = SO3(g)
2
How do these two equilibrium expressions differ?
What important principle about the dependence of equilibrium constants on the stoichiometry of a
reaction can you learn from this comparison?
Chapter 18 Solutions
General Chemistry: Principles and Modern Applications (11th Edition)
Ch. 18 - Write K10 expressions for the following...Ch. 18 - Write solubility equilibrium equations that are...Ch. 18 - The following K10 values ate found in a handbook....Ch. 18 - Calculate the aqueous solubility, in moles per...Ch. 18 - Prob. 5ECh. 18 - Which of the following saturated aqueous solutions...Ch. 18 - Fluoridated drinking water contains about 1 part...Ch. 18 - In the qualitative cation analysis procedure, Bi2+...Ch. 18 - Prob. 9ECh. 18 - A 725mL sample of a saturated solution of calcium...
Ch. 18 - A 25.00mL sample of a clear saturated solution of...Ch. 18 - A 250 mL sample of saturated CaC2O4 (aq) requires...Ch. 18 - Prob. 13ECh. 18 - Prob. 14ECh. 18 - Calculate the molar solubility of...Ch. 18 - How would you expect the presence of the following...Ch. 18 - Prob. 17ECh. 18 - Describe the effect of the salt NNO2 on the...Ch. 18 - A 0.150 M Na2SO4 , solution that is saturated with...Ch. 18 - It 100.0 mL of 0. 0025 U Na2SO4(aq) is saturated...Ch. 18 - What [Pb2+] should be maintained in Pb( NO2)2(aq)...Ch. 18 - What [l-] should be maintained in Kl(aq) to...Ch. 18 - Can the solubility of Ag2CrO4 be lowered to 5.0104...Ch. 18 - Prob. 24ECh. 18 - Prob. 25ECh. 18 - Prob. 26ECh. 18 - Will prectiation of MgF2(s) occur if a 22.5 mg...Ch. 18 - Will pbCl2 precitate when 155mL of 0.016M KCl(aq)...Ch. 18 - What is the minimum pH at which Cd(OH)2(s) will...Ch. 18 - What is the minimum pH at which Cr(OH)2(s) will...Ch. 18 - Will precipitation occur in the following cases?...Ch. 18 - Prob. 32ECh. 18 - Prob. 33ECh. 18 - Prob. 34ECh. 18 - When 200.0 ml. of 0 350 N K2CrO4(aq) are added to...Ch. 18 - What percentage of the original Ag4 remains in...Ch. 18 - Prob. 37ECh. 18 - The ancient Romans added calcium sulfate to wine...Ch. 18 - Prob. 39ECh. 18 - Prob. 40ECh. 18 - Kl(aq) is slowly added to a solution with...Ch. 18 - A solution is 0010 M en both CrO42- and SO42 . To...Ch. 18 - An aqueous solution that 200 U m AgNO2 slowly...Ch. 18 - AgNO2(aq) is slowly added to a solution that is...Ch. 18 - Which of the following solids is (are) more...Ch. 18 - Which of the blowing solids is (are) more soluble...Ch. 18 - The solubility of Mg(OH)2 m a particualr buffer...Ch. 18 - To 0.350L of 0.150MNH2 is added 0.150 L of 0.100 M...Ch. 18 - For the equilibrium...Ch. 18 - Will the following precipitates form under the...Ch. 18 - Prob. 51ECh. 18 - Prob. 52ECh. 18 - In a solution that is 0.0500M in [Cu( CN)4]2 and...Ch. 18 - Calculate [Cu2+] in a 0.10M CuSO4(aq) solution...Ch. 18 - Prob. 55ECh. 18 - A solution is 0.10 M in free NH2 ,0.10M in NH4Cl ,...Ch. 18 - A 0.10 mol sample of AgNO2(s) is dissolved in...Ch. 18 - A solution is prepared at has [NH2]=1.00M and...Ch. 18 - Prob. 59ECh. 18 - A solution is 0.05 U m Cu2+ in Hg2+ , and in Mn2+...Ch. 18 - Prob. 61ECh. 18 - Prob. 62ECh. 18 - Suppose you did a group 1 qualitative cation...Ch. 18 - Prob. 64ECh. 18 - Prob. 65ECh. 18 - Prob. 66ECh. 18 - Prob. 67IAECh. 18 - A handbook lists the solubility of CaHPO4 as 0.32g...Ch. 18 - Prob. 69IAECh. 18 - What percentage of the Ba2+ in solution is...Ch. 18 - Prob. 71IAECh. 18 - Prob. 72IAECh. 18 - Prob. 73IAECh. 18 - What is the solubility of MnS, in grams per liter,...Ch. 18 - Prob. 75IAECh. 18 - Prob. 76IAECh. 18 - Prob. 77IAECh. 18 - Prob. 78IAECh. 18 - Prob. 79IAECh. 18 - Prob. 80IAECh. 18 - Prob. 81IAECh. 18 - Prob. 82IAECh. 18 - Prob. 83IAECh. 18 - Prob. 84IAECh. 18 - A 2509 sample of Ag2SO4(s) added to a beaker...Ch. 18 - Prob. 86IAECh. 18 - Prob. 87FPCh. 18 - In the Mohr titration, Cl(aq) is titrated with...Ch. 18 - The accompanying drawing suggests a series of...Ch. 18 - Prob. 90SAECh. 18 - Briefly describe each of the following ideas,...Ch. 18 - Prob. 92SAECh. 18 - Prob. 93SAECh. 18 - Prob. 94SAECh. 18 - Prob. 95SAECh. 18 - Prob. 96SAECh. 18 - Prob. 97SAECh. 18 - Prob. 98SAECh. 18 - Prob. 99SAECh. 18 - Prob. 100SAECh. 18 - Prob. 101SAECh. 18 - Prob. 102SAECh. 18 - Prob. 103SAECh. 18 - Prob. 104SAECh. 18 - Prob. 105SAECh. 18 - Prob. 106SAECh. 18 - Will Agl(s) precipitate from a solution with [[Ag...Ch. 18 - Prob. 108SAECh. 18 - Appendix describes a useful study aid known as...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Given Kp for 2 reactions. Find the Kp for the following reaction: BrCl(g)+ 1/2 I2(g) ->IBr(g) + 1/2 Cl2(g)arrow_forwardFor a certain gas-phase reaction at constant pressure, the equilibrium constant Kp is observed to double when the temperature increases from 300 K to 400 K. Calculate the enthalpy change of the reaction, Ah, using this information.arrow_forwardHydrogen bonding in water plays a key role in its physical properties. Assume that the energy required to break a hydrogen bond is approximately 8 kJ/mol. Consider a simplified two-state model where a "formed" hydrogen bond is in the ground state and a "broken" bond is in the excited state. Using this model: • Calculate the fraction of broken hydrogen bonds at T = 300 K, and also at T = 273 K and T = 373 K. • At what temperature would approximately 50% of the hydrogen bonds be broken? • What does your result imply about the accuracy or limitations of the two-state model in describing hydrogen bonding in water? Finally, applying your understanding: • Would you expect it to be easier or harder to vaporize water at higher temperatures? Why? If you were to hang wet laundry outside, would it dry more quickly on a warm summer day or on a cold winter day, assuming humidity is constant?arrow_forward
- (3 pts) Use the Kapustinskii equation to calculate the lattice enthalpy for MgBr2 anddiscuss any differences between this result and that from #4.arrow_forward(3 pts) Silver metal adopts a fcc unit cell structure and has an atomic radius of 144 pm. Fromthis information, calculate the density of silver. Show all work.arrow_forward4. (3 pts) From the information below, determine the lattice enthalpy for MgBr2. Show all work. AH/(kJ mol-¹) Sublimation of Mg(s) +148 lonization of Mg(g) +2187 to Mg2+(g) Vaporization of Br₂(1) +31 Dissociation of Br,(g) +193 Electron gain by Br(g) -331 Formation of MgBr₂(s) -524arrow_forward
- 1. (4 pts-2 pts each part) Consider the crystal structures of NaCl, ZnS, and CsCl (not necessarily shown in this order). a. For one of the three compounds, justify that the unit cell is consistent with stoichiometry of the compound. b. In each of the crystal structures, the cations reside in certain holes in the anions' packing structures. For each compound, what type of holes are occupied by the cations and explain why those particular types of holes are preferred.arrow_forward(2 pts) What do you expect to happen in a Na2O crystal if a Cl− ion replaces one of the O2−ions in the lattice?arrow_forward(2 pts) WSe2 is an ionic compound semiconductor that can be made to be p-type or n-type.What must happen to the chemical composition for it to be p-type? What must happen tothe chemical composition for it to be n-type?arrow_forward
- 8. (2 pts) Silicon semiconductors have a bandgap of 1.11 eV. What is the longest photon wavelength that can promote an electron from the valence band to the conduction band in a silicon-based photovoltaic solar cell? Show all work. E = hv = hc/λ h = 6.626 x 10-34 Js c = 3.00 x 108 m/s 1 eV 1.602 x 10-19 Jarrow_forwardA solution containing 100.0 mL of 0.155 M EDTA buffered to pH 10.00 was titrated with 100.0 mL of 0.0152 M Hg(ClO4)2 in a cell: calomel electrode (saturated)//titration solution/Hg(l) Given the formation constant of Hg(EDTA)2-, logKf= 21.5, and alphaY4-=0.30, find out the cell voltage E. Hg2+(aq) + 2e- = Hg(l) E0= 0.852 V E' (calomel electrode, saturated KCl) = 0.241 Varrow_forwardFrom the following reduction potentials I2 (s) + 2e- = 2I- (aq) E0= 0.535 V I2 (aq) + 2e- = 2I- (aq) E0= 0.620 V I3- (aq) + 2e- = 3I- (aq) E0= 0.535 V a) Calculate the equilibrium constant for I2 (aq) + I- (aq) = I3- (aq). b) Calculate the equilibrium constant for I2 (s) + I- (aq) = I3- (aq). c) Calculate the solubility of I2 (s) in water.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning

Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY