College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 61GP
A 150-cm-tall diver is standing completely submerged on the bottom of a swimming pool full of water. You are sitting on the end of the diving board, almost directly over her. How tall does the diver appear to be?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
To dress up your dorm room, you have purchased a perfectly spherical glass fishbowl to place on the windowsill. After placing the sand, decorations, and water in the bowl of diameter 40.0 cm, you transfer a single tropical fish from a plastic bag into the bowl. As you watch the fish, your roommate comes home. He watches the fish also and notices that the apparent size of the fish changes as it swims around in the bowl. (a) He is not taking a physics course, so he asks you to tell him the range of magnifications of the fish as it swims along a line from the back of the bowl along a line passing through the center of the bowl directly toward the observer. (b) Your roommate also asks you if the fish might be baked if it swims through a point at which the rays of the Sun focus at some point as they pass through the curved sides of the bowl. Should you worry aboutyour fish being baked? Ignore the effect of the thin glass walls of the bowl; take only the water into consideration.
To dress up your dorm room, you have purchased a perfectly spherical glass fishbowl to place on the windowsill. After placing the sand, decorations, and water in the bowl of diameter 40.0 cm, you transfer a single tropical fish from a plastic bag into the bowl. As you watch
the fish, your roommate comes home. He watches the fish also and notices that the apparent size of the fish changes as it swims around in the bowl. Ignore the effect of the thin glass walls of the bowl; take only the water into consideration. (Assume the index of refraction
of water is 1.33 and the index of refraction of air is 1.00.)
(a) He is not taking a physics course, so he asks you to tell him the range of magnifications of the fish as it swims along a line from the back of the bowl along a line passing through the center of the bowl directly toward the observer.
= 0.2
M
M
min
max
Combine the equations for the formation of an image for a curved refracting surface and its magnification.
0.33
x
Combine the…
To dress up your dorm room, you have purchased a perfectly spherical glass fishbowl to place on the windowsill. After placing the sand, decorations, and water in the bowl of diameter 40.0 cm, you transfer a single tropical fish from a plastic bag into the bowl. As you watch
the fish, your roommate comes home. He watches the fish also and notices that the apparent size of the fish changes as it swims around in the bowl. Ignore the effect of the thin glass walls of the bowl; take only the water into consideration. (Assume the index of refraction
of water is 1.33 and the index of refraction of air is 1.00.)
(a) He is not taking a physics course, so he asks you to tell him the range of magnifications of the fish as it swims along a line from the back of the bowl along a line passing through the center of the bowl directly toward the observer.
Mmin
M.
max
=
(b) Your roommate also asks you if the fish might be baked if it swims through a point at which the rays of the Sun focus at some point…
Chapter 18 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 18 - Prob. 1CQCh. 18 - Prob. 2CQCh. 18 - Can you see the rays from the sun on a clear day?...Ch. 18 - If you take a walk on a summer night along a dark,...Ch. 18 - You are looking at the image of a pencil in a...Ch. 18 - Prob. 6CQCh. 18 - In Manets A Bar at the Folies-Bergere (see Figure...Ch. 18 - Explain why ambulances have the word AMBULANCE...Ch. 18 - a. Consider one point on an object near a lens....Ch. 18 - When you look at your reflection in the bowl of a...
Ch. 18 - A concave mirror brings the suns rays to a focus...Ch. 18 - Prob. 12CQCh. 18 - You are looking straight into the front of an...Ch. 18 - A lens can be used to start a fire by focusing an...Ch. 18 - A piece of transparent plastic is molded into the...Ch. 18 - From where you stand one night, you see the moon...Ch. 18 - Questions 17 through 19 are concerned with the...Ch. 18 - Prob. 18MCQCh. 18 - Is there an angle of incidence between 0 and 90...Ch. 18 - A 2.0-m-tall man is 5.0 m from the converging lens...Ch. 18 - You are 2.4 m from a plane mirror, and you would...Ch. 18 - As shown in Figure Q18.22, an object is placed in...Ch. 18 - A real image of an object can be formed by A. A...Ch. 18 - An object is 40 cm from a converging lens with a...Ch. 18 - The lens in Figure Q18 .25 is used to produce a...Ch. 18 - A converging lens of focal length 20 cm is used to...Ch. 18 - You look at yourself in a convex mirror. Your...Ch. 18 - An object is 50 cm from a diverging lens with a...Ch. 18 - A 5.0-ft-tall girl stands on level ground. The sun...Ch. 18 - A 10-cm-diameter disk emits light uniformly from...Ch. 18 - A point source of light illuminates an aperture...Ch. 18 - Prob. 4PCh. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - It is 165 cm from your eyes to your toes. Youre...Ch. 18 - Prob. 8PCh. 18 - An underwater diver sees the sun 50 above...Ch. 18 - A laser beam in air is incident on a liquid at an...Ch. 18 - A 1.0-cm-thick layer of water stands on a...Ch. 18 - A 4.0-m-wide swimming pool is filled to the top....Ch. 18 - A diamond is underwater. A light ray enters one...Ch. 18 - Prob. 14PCh. 18 - A light ray travels inside a horizontal plate of...Ch. 18 - Prob. 16PCh. 18 - A biologist keeps a specimen of his favorite...Ch. 18 - A fish in a flat-sided aquarium sees a can of fish...Ch. 18 - A swim mask has a pocket of air between your eyes...Ch. 18 - An object is 30 cm in front of a converging lens...Ch. 18 - An object is 6.0 cm in front of a converging lens...Ch. 18 - An object is 20 cm in front of a diverging lens...Ch. 18 - An object is 15 cm in front of a diverging lens...Ch. 18 - A concave cosmetic mirror has a focal length of 40...Ch. 18 - A light bulb is 60 cm from a concave mirror with a...Ch. 18 - The illumination lights in an operating room use a...Ch. 18 - A dentist uses a curved mirror to view the back...Ch. 18 - A convex mirror, like the passenger-side rearview...Ch. 18 - An object is 12 cm in front of a convex mirror....Ch. 18 - A 2.0-cm-tall object is 40 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 10 cm in front of a...Ch. 18 - A 2.0-cm-tall object is 15 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 75 cm in front of a...Ch. 18 - A 2.0-cm-tall object is 15 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 60 cm in front of a...Ch. 18 - A 3.0-cm-tall object is 15 cm in front of a convex...Ch. 18 - A 3.0-cm-tall object is 45 cm in front of a convex...Ch. 18 - A 3.0-cm-tall object is 15 cm in front of a...Ch. 18 - A 3.0-cm-tall object is 45 cm in front of a...Ch. 18 - At what distance from a concave mirror with a 35...Ch. 18 - Starting 3.5 m from a department store mirror,...Ch. 18 - You slowly back away from a plane mirror at a...Ch. 18 - At what angle should the laser beam in Figure...Ch. 18 - Prob. 44GPCh. 18 - Prob. 45GPCh. 18 - The place you get your hair cut has two nearly...Ch. 18 - Prob. 47GPCh. 18 - A ray of light traveling through air encounters a...Ch. 18 - Prob. 49GPCh. 18 - Prob. 50GPCh. 18 - Prob. 51GPCh. 18 - Its nighttime, and youve dropped your goggles into...Ch. 18 - One of the contests at the school carnival is to...Ch. 18 - Figure P18.54 shows a meter stick lying on the...Ch. 18 - Prob. 55GPCh. 18 - Prob. 56GPCh. 18 - Prob. 57GPCh. 18 - Prob. 58GPCh. 18 - A 1.0-cm-thick layer of water stands on a...Ch. 18 - The glass core of an optical fiber has index of...Ch. 18 - A 150-cm-tall diver is standing completely...Ch. 18 - To a fish, the 4 00-mm-thick aquarium walls appear...Ch. 18 - A microscope is focused on an amoeba. When a...Ch. 18 - A ray diagram can be used to find the location of...Ch. 18 - A 2.0-cm-tall object is located 8.0 cm in front of...Ch. 18 - You need to use a 24-cm-focal-length lens to...Ch. 18 - A near-sighted person might correct his vision by...Ch. 18 - A 1.0-cm-tall object is 20 cm in front of a...Ch. 18 - A 2.0-cm-tall object is 20 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 7.5 cm in front of a...Ch. 18 - A 1.5-cm-tall object is 90 cm in front of a...Ch. 18 - The moon is 3.5 106 m in diameter and 3.8 108 m...Ch. 18 - A 2.0-cm-tall candle flame is 2.0 m from a wall....Ch. 18 - A 2.0-cm-diameter spider is 2.0 m from a wall....Ch. 18 - Figure P18.75 shows a meter stick held lengthwise...Ch. 18 - A slide projector needs to create a 98-cm-high...Ch. 18 - The writing on the passenger-side mirror of your...Ch. 18 - The pocket of hot air appears to be a pool of...Ch. 18 - Which of these changes would allow you to get...Ch. 18 - If you could clearly see the image of an object...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A dedicated sports car enthusiast polishes the inside and outside surfaces of a hubcap that is a thin section of a sphere. When she looks into one side of the hubcap, she sees an image of her face 30.0 cm in back of the hubcap. She then flips the hubcap over and sees another image of her face 10.0 cm in back of the hubcap. (a) How far is her face from the hubcap? (b) What is the radius of curvature of the hubcap?arrow_forwardThe object in Figure P23.52 is mid-way between the lens and the mirror, which are separated by a distance d = 25.0 cm. The magnitude of the mirrors radius of curvature is 20.0 cm, and the lens has a focal length of 16.7 cm. (a) Considering only the light that leaves the object and travels first toward the mirror, locate the final image formed by this system. (b) Is the image real or virtual? (c) Is it upright or inverted? (d) What is the overall magnification of the image? Figure P23.52arrow_forwardCurved glassair interfaces like those observed in an empty shot glass make it possible for total internal reflection to occur at the shot glasss internal surface. Consider a glass cylinder (n = 1.54) with an outer radius of 2.50 cm and an inner radius of 2.00 cm as shown in Figure P38.105. Find the minimum angle i such that there is total internal reflection at the inner surface of the shot glass. FIGURE P38.105 Problems 105 and 106.arrow_forward
- A dedicated sports car enthusiast polishes the inside outside surfaces of a hubcap that is a thin section of a sphere. When she looks into one side of the hubcap. she sees an image of her face 30.0 cm in back of the hubcap. She then flips the hubcap over and sees another image of her face 10.0 cm in back of the hubcap. (a) How far is her face from the hubcap? (b) What is the radius of curvature of the hubcap?arrow_forwardTo dress up your dorm room, you have purchased a perfectly spherical glass fishbowl to place on the windowsill. After placing the sand, decorations, and water in the bowl of diameter 40.0 cm, you transfer a single tropical fish from a plastic bag into the bowl. As you watch the fish, your roommate comes home. He watches the fish also and notices that the apparent size of the fish changes as it swims around in the bowl. Ignore the effect of the thin glass walls of the bowl; take only the water into consideration. (Assume the index of refraction of water is 1.33 and the index of refraction of air is 1.00.) (a) He is not taking a physics course, so he asks you to tell him the range of magnifications of the fish as it swims along a line from the back of the bowl along a line passing through the center of the bowl directly toward the observer. M. min M max = =arrow_forwardAn cylindrical opaque drinking glass has a diameter 4 cm and height h, as shown in the figure. An observer's eye is placed as shown (the observer is just barely looking over the rim of the glass). When empty, the observer can just barely see the edge of the bottom of the glass. When filled to the brim with a transparent liquid, the observer can just barely see the center of the bottom of the glass. The liquid in the drinking glass has an index of refraction of 1.15. KRI Oi Calculate the angle 0,. Answer in units of degrees. eyearrow_forward
- The rear window in a car is approximately a rectangle, 2.3 m wide and 0.60 m high. The inside rearview mirror is 0.40 m from the driver's eyes, and 2.10 m from the rear window. What is the minimum length for the rearview mirror in cm if the driver is to be able to see the entire width and height of the rear window in the mirror without moving her head?arrow_forwardA layer of liquid-A water (n = 1.305) floats on liquid-B carbon tetra-chloride (n = 1.682) contained in an aquarium. What is the critical angle at the interface between the two liquids?arrow_forwardYou sight along the rim of a glass with vertical sides so that the top rim is lined up with the opposite edge of the bottom (Fig.a). The glass is a thin-walled, hollow cylinder 16.0 cm high. The diameter of the top and bottom of the glass is 8.0 cm. While you keep your eye in the same position, a friend fills the glass with a transparent liquid, and you then see a dime that is lying at the center of the bottom of the glass (Fig.b). What is the index of refraction of the liquid?arrow_forward
- A glass tumbler having inner depth of 17.5 cm is kept on a table. A student starts pouring water (μ 4/3) into it while looking at the surface of water from the above. When he feels that the = tumbler is half filled, he stops pouring water. Up to what height, the tumbler is actually filled ?arrow_forwardA man in a boat is looking straight down at a fish in the water (n = 1.333) directly beneath him. The fish is looking straight up at the man. They are equidistant from the air/water interface. To the man, the fish appears to be 2.3 m beneath his eyes. To the fish, how far above its eyes does the man appear to be?arrow_forwardA soda straw is stuck into water at an angle of 36° to the vertical. Looking straight down, what does the angle of the submerged portion of the straw to the vertical appear to be?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY