College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 55GP
To determine
Distance from the person to the beam’s strike position.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A man in a boat is looking straight down at a fish in the water (n = 1.333) directly beneath him. The fish is looking straight up at the man. They are equidistant from the air/water interface. To the man, the fish appears to be 2.3 m beneath his eyes. To the fish, how far above its eyes does the man appear to be?
After a long day of driving you take a late-night swim in a motel swimming pool. When you go to your room, you realize that you have lost your room
key in the pool. You borrow a powerful flashlight and walk around the pool, shining the light into it. The light shines on the key, which is lying on the
bottom of the pool, when the flashlight is held 1.2 m above the water surface and is directed at the surface a horizontal distance of 1.5 m from the
edge.
Part A
If the water here is 4.0 m deep, how far is the key from the edge of the pool?
Express your answer in meters.
5 ΑΣΦ
Submit
Request Answer
?
m
<-1.5m
↑
1.2 m
4.0 m
After a long day of driving you take a late-night swim in a
motel swimming pool. When you go to your room, you realize
that you have lost your room key in the pool. You borrow a
powerful flashlight and walk around the pool, shining the light
into it. The light shines on the key, which is lying on the
bottom of the pool, when the flashlight is held 1.2 m above
the water surface and is directed at the surface a horizontal
distance of 1.5m from the edge (Figure 1).
Figure
1 of 1
下
1.2 m
Provi
<1.5 m-
40m
耳
Chapter 18 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 18 - Prob. 1CQCh. 18 - Prob. 2CQCh. 18 - Can you see the rays from the sun on a clear day?...Ch. 18 - If you take a walk on a summer night along a dark,...Ch. 18 - You are looking at the image of a pencil in a...Ch. 18 - Prob. 6CQCh. 18 - In Manets A Bar at the Folies-Bergere (see Figure...Ch. 18 - Explain why ambulances have the word AMBULANCE...Ch. 18 - a. Consider one point on an object near a lens....Ch. 18 - When you look at your reflection in the bowl of a...
Ch. 18 - A concave mirror brings the suns rays to a focus...Ch. 18 - Prob. 12CQCh. 18 - You are looking straight into the front of an...Ch. 18 - A lens can be used to start a fire by focusing an...Ch. 18 - A piece of transparent plastic is molded into the...Ch. 18 - From where you stand one night, you see the moon...Ch. 18 - Questions 17 through 19 are concerned with the...Ch. 18 - Prob. 18MCQCh. 18 - Is there an angle of incidence between 0 and 90...Ch. 18 - A 2.0-m-tall man is 5.0 m from the converging lens...Ch. 18 - You are 2.4 m from a plane mirror, and you would...Ch. 18 - As shown in Figure Q18.22, an object is placed in...Ch. 18 - A real image of an object can be formed by A. A...Ch. 18 - An object is 40 cm from a converging lens with a...Ch. 18 - The lens in Figure Q18 .25 is used to produce a...Ch. 18 - A converging lens of focal length 20 cm is used to...Ch. 18 - You look at yourself in a convex mirror. Your...Ch. 18 - An object is 50 cm from a diverging lens with a...Ch. 18 - A 5.0-ft-tall girl stands on level ground. The sun...Ch. 18 - A 10-cm-diameter disk emits light uniformly from...Ch. 18 - A point source of light illuminates an aperture...Ch. 18 - Prob. 4PCh. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - It is 165 cm from your eyes to your toes. Youre...Ch. 18 - Prob. 8PCh. 18 - An underwater diver sees the sun 50 above...Ch. 18 - A laser beam in air is incident on a liquid at an...Ch. 18 - A 1.0-cm-thick layer of water stands on a...Ch. 18 - A 4.0-m-wide swimming pool is filled to the top....Ch. 18 - A diamond is underwater. A light ray enters one...Ch. 18 - Prob. 14PCh. 18 - A light ray travels inside a horizontal plate of...Ch. 18 - Prob. 16PCh. 18 - A biologist keeps a specimen of his favorite...Ch. 18 - A fish in a flat-sided aquarium sees a can of fish...Ch. 18 - A swim mask has a pocket of air between your eyes...Ch. 18 - An object is 30 cm in front of a converging lens...Ch. 18 - An object is 6.0 cm in front of a converging lens...Ch. 18 - An object is 20 cm in front of a diverging lens...Ch. 18 - An object is 15 cm in front of a diverging lens...Ch. 18 - A concave cosmetic mirror has a focal length of 40...Ch. 18 - A light bulb is 60 cm from a concave mirror with a...Ch. 18 - The illumination lights in an operating room use a...Ch. 18 - A dentist uses a curved mirror to view the back...Ch. 18 - A convex mirror, like the passenger-side rearview...Ch. 18 - An object is 12 cm in front of a convex mirror....Ch. 18 - A 2.0-cm-tall object is 40 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 10 cm in front of a...Ch. 18 - A 2.0-cm-tall object is 15 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 75 cm in front of a...Ch. 18 - A 2.0-cm-tall object is 15 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 60 cm in front of a...Ch. 18 - A 3.0-cm-tall object is 15 cm in front of a convex...Ch. 18 - A 3.0-cm-tall object is 45 cm in front of a convex...Ch. 18 - A 3.0-cm-tall object is 15 cm in front of a...Ch. 18 - A 3.0-cm-tall object is 45 cm in front of a...Ch. 18 - At what distance from a concave mirror with a 35...Ch. 18 - Starting 3.5 m from a department store mirror,...Ch. 18 - You slowly back away from a plane mirror at a...Ch. 18 - At what angle should the laser beam in Figure...Ch. 18 - Prob. 44GPCh. 18 - Prob. 45GPCh. 18 - The place you get your hair cut has two nearly...Ch. 18 - Prob. 47GPCh. 18 - A ray of light traveling through air encounters a...Ch. 18 - Prob. 49GPCh. 18 - Prob. 50GPCh. 18 - Prob. 51GPCh. 18 - Its nighttime, and youve dropped your goggles into...Ch. 18 - One of the contests at the school carnival is to...Ch. 18 - Figure P18.54 shows a meter stick lying on the...Ch. 18 - Prob. 55GPCh. 18 - Prob. 56GPCh. 18 - Prob. 57GPCh. 18 - Prob. 58GPCh. 18 - A 1.0-cm-thick layer of water stands on a...Ch. 18 - The glass core of an optical fiber has index of...Ch. 18 - A 150-cm-tall diver is standing completely...Ch. 18 - To a fish, the 4 00-mm-thick aquarium walls appear...Ch. 18 - A microscope is focused on an amoeba. When a...Ch. 18 - A ray diagram can be used to find the location of...Ch. 18 - A 2.0-cm-tall object is located 8.0 cm in front of...Ch. 18 - You need to use a 24-cm-focal-length lens to...Ch. 18 - A near-sighted person might correct his vision by...Ch. 18 - A 1.0-cm-tall object is 20 cm in front of a...Ch. 18 - A 2.0-cm-tall object is 20 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 7.5 cm in front of a...Ch. 18 - A 1.5-cm-tall object is 90 cm in front of a...Ch. 18 - The moon is 3.5 106 m in diameter and 3.8 108 m...Ch. 18 - A 2.0-cm-tall candle flame is 2.0 m from a wall....Ch. 18 - A 2.0-cm-diameter spider is 2.0 m from a wall....Ch. 18 - Figure P18.75 shows a meter stick held lengthwise...Ch. 18 - A slide projector needs to create a 98-cm-high...Ch. 18 - The writing on the passenger-side mirror of your...Ch. 18 - The pocket of hot air appears to be a pool of...Ch. 18 - Which of these changes would allow you to get...Ch. 18 - If you could clearly see the image of an object...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forwardAfter a long day of driving you take a late-night swim in a motel swimming pool. When you go to your room, you realize that you have lost your room key in the pool. You borrow a powerful flashlight and walk around the pool, shining the light into it. The light shines on the key, which is lying on the bottom of the pool, when the flashlight is held 1.2 m above the water surface and is directed at the surface a horizontal distance of 1.5 m from the edge If the water here is 4.0 m deep, how far is the key from the edge of the pool?arrow_forwardAfter a long day of driving you take a late-night swim in a motel swimming pool. When you go to your room, you realize that you have lost your room key in the pool. You borrow a powerful flashlight and walk around the pool, shining the light into it. The light shines on the key, which is lying on the bottom of the pool, when the flashlight is held 1.2 m above the water surface and is directed at the surface a horizontal distance of 1.5 m from the edge. If the water here is 4.0 m deep, how far is the key from the edge of the pool? (Given refractive index of water is = 1.33) 1.5 m 1.2 m 4.0 marrow_forward
- A submarine is 301 m horizontally out from the shore and 104 m beneath the surface of the water. A laser beam is sent from the sub so that it strikes the surface of the water at a point 242 m from the shore. If the beam just strikes the top of a building standing directly at the water's edge, find the height of the building.arrow_forwardA laser beam in air is incident on a liquid at an angle of 33° with respect to the normal. The laser beam's angle in the liquid is 24°. What is the liquid's index of refraction? 1.12 ○ 1.34 ○ 0.75 O 1.43 ○ 1.10 O 1.47arrow_forwardAfter a long day of travel, late at night, you swim in the pool of the hotel where you are staying. As you retire to your room, you realize you have lost the key to the pool. You get a powerful flashlight and walk around the pool shining the light on it. The light illuminates the key, which lies at the bottom of the pool, when you hold the flashlight 1.2 m from the surface of the water and point it toward the surface at a horizontal distance of 1.5 m from the edge (see figure). If the water at that point is 4.0 m deep, how far from the edge of the pool is the key?arrow_forward
- A submarine is 285 m horizontally from the shore of a freshwater lake and 111 m beneath the surface of the water. A laser beam is sent from the submarine so that the beam strikes the surface of the water 201 m from the shore. A building stands on the shore, and the laser beam hits a target at the top of the building. The goal is to find the height of the target above sea level. Draw a diagram of the situation, identifying the two triangles that are important in finding the solution.arrow_forwardA ray of light strikes a flat block of glass at an incidence angle of ?1 = 38.6°. The glass is 2.00 cm thick and has an index of refraction that equals ng = 1.52. a.) The distance d separates the twice-bent ray from the path it would have taken without the glass in the way. What is this distance (in cm)? b.) At what speed (in m/s) does the light travel within the glass? c.) How many nanoseconds does the light take to pass through the glass along the angled path shown here?arrow_forwardJust beneath the surface of some very placid water (n = 1.33), lurks a shark. A piece of meat is dangled above the water’s surface and at a considerable horizontal distance away from the shark, as shown above. You are having a discussion with your two friends about whether the shark will be able to see the meat. Friend 1 – says that the shark will not be able to see the meat. Friend 2 claims that the shark can see the meat, only the shark will perceive the meat to be higher than it is in reality. Which friend (if either) do you agree with? show diagram with explanationarrow_forward
- Just beneath the surface of some very placid water (n = 1.33), lurks a shark. A piece of meat is dangled above the water’s surface and at a considerable horizontal distance away from the shark, as shown above. You are having a discussion with your two friends about whether the shark will be able to see the meat. Friend 1 – says that the shark will not be able to see the meat. Friend 2 claims that the shark can see the meat, only the shark will perceive the meat to be higher than it is in reality. Which friend (if either) do you agree with? Can you support your answer with a diagram?arrow_forwardA submarine is 300 m horizontally from the shore of a freshwater lake and 100 m beneath the surface of the water. A laser beam is sent from the submarine so that the beam strikes the surface of the water 210 m from the shore. A building stands on the shore, and the laser beam hits a target at the top of the building. The goal is to find the height of the target above sea level. (a) Draw a diagram of the situation, identifying the two triangles that are important in finding the solution. (b) Find the angle of incidence of the beam striking the water–air interface. (c) Find the angle of refraction. (d) What angle does the refracted beam make with the horizontal? (e) Find the height of the target above sea level.arrow_forwardYou observe a fish through the flat side of a large saltwater aquarium. The fish appears to be swimming at a speed of 14 cm/s directly toward you. The index of refraction of the saltwater is 1.35 Part (a) What is the actual speed of the fish, in centimeters per second?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY