
Concept explainers
a)
Interpretation:
The most reactive compound in an electrophilic
Concept Introduction:
Effect of an electron withdrawing or an electron releasing group:
The electron withdrawing or electron releasing groups have significance role in the activation and deactivation of benzene rings during an electrophilic aromatic substitution reaction. An electron withdrawing group deactivates the benzene rings by reducing the electron density on the rings. The electrophilic groups have the tendency to accept or withdraw the electrons from the rest of compound. The deactivating groups are those groups that tend to withdraw the electron density from the benzene ring and decrease the overall
Rule: The rate of reactions in aromatic electrophilic substitution reactions rely upon the presence of an electron releasing or an electron withdrawing group.
b)
Interpretation:
The least reactive compound in an electrophilic aromatic substitution reaction for each row of substituted benzenes has to be predicted.
Concept Introduction:
Effect of an electron withdrawing or an electron releasing group:
The electron withdrawing or electron releasing groups have significance role in the activation and deactivation of benzene rings during an electrophilic aromatic substitution reaction. An electron withdrawing group deactivates the benzene rings by reducing the electron density on the rings. The electrophilic groups have the tendency to accept or withdraw the electrons from the rest of compound. The deactivating groups are those groups that tend to withdraw the electron density from the benzene ring and decrease the overall rate of reactions.
Rule: The rate of reactions in aromatic electrophilic substitution reactions rely upon the presence of an electron releasing or an electron withdrawing group.
c)
Interpretation:
The compound that yields the highest percentage of a meta product in an electrophilic aromatic substitution reaction for each horizontal row of substituted benzenes has to be stated.
Concept Introduction:
Effect of an electron withdrawing or an electron releasing group:
The electron withdrawing or electron releasing groups have significance role in the activation and deactivation of benzene rings during an electrophilic aromatic substitution reaction. An electron withdrawing group deactivates the benzene rings by reducing the electron density on the rings. The electrophilic groups have the tendency to accept or withdraw the electrons from the rest of compound. The deactivating groups are those groups that tend to withdraw the electron density from the benzene ring and decrease the overall rate of reactions.
Rule: The rate of reactions in aromatic electrophilic substitution reactions rely upon the presence of an electron releasing or an electron withdrawing group.

Want to see the full answer?
Check out a sample textbook solution
Chapter 18 Solutions
Pearson eText Organic Chemistry -- Instant Access (Pearson+)
- draw the enolate anion and the carbonyl that would be needed to make this product through an aldol addition reaction.arrow_forwardDraw the Michael Adduct and the final product of the Robinson annulation reaction. Ignore inorganic byproducts.arrow_forwardDraw the Michael adduct and final product of the Robinson annulation reaction. Ignore inorganic byproductsarrow_forward
- Post Lab Questions. 1) Draw the mechanism of your Diels-Alder cycloaddition. 2) Only one isomer of product is formed in the Diels-Alder cycloaddition. Why? 3) Imagine that you used isoprene as diene - in that case you don't have to worry about assigning endo vs exo. Draw the "endo" and "exo" products of the Diels-Alder reaction between isoprene and maleic anhydride, and explain why the distinction is irrelevant here. 4) This does not hold for other dienes. Draw the exo and endo products of the reaction of cyclohexadiene with maleic anhydride. Make sure you label your answers properly as endo or exo. 100 °C Xylenes ??? 5) Calculate the process mass intensity for your specific reaction (make sure to use your actual amounts of reagent).arrow_forwardIndicate the product(s) A, B C and D that are formed in the reaction: H + NH-NH-CH [A+B] [C+D] hydrazonesarrow_forwardHow can you prepare a 6 mL solution of 6% H2O2, if we have a bottle of 30% H2O2?arrow_forward
- How many mL of H2O2 from the 30% bottle must be collected to prepare 6 mL of 6% H2O2.arrow_forwardIndicate the product(s) B and C that are formed in the reaction: HN' OCH HC1 B + mayoritario C minoritario OCH3arrow_forwardIndicate the product(s) that are formed in the reaction: NH-NH, OCH3 -H₂O OCH3arrow_forward
- 21.38 Arrange the molecules in each set in order of increasing acidity (from least acidic to most acidic). OH OH SH NH2 8 NH3 OH (b) OH OH OH (c) & & & CH3 NO2 21.39 Explain the trends in the acidity of phenol and the monofluoro derivatives of phenol. OH OH OH OH PK 10.0 PK 8.81 PK 9.28 PK 9.81arrow_forwardidentify which spectrum is for acetaminophen and which is for phenacetinarrow_forwardThe Concept of Aromaticity 21.15 State the number of 2p orbital electrons in each molecule or ion. (a) (b) (e) (f) (c) (d) (h) (i) DA (k) 21.16 Which of the molecules and ions given in Problem 21.15 are aromatic according to the Hückel criteria? Which, if planar, would be antiaromatic? 21.17 Which of the following structures are considered aromatic according to the Hückel criteria? ---0-0 (a) (b) (c) (d) (e) (h) H -H .8.0- 21.18 Which of the molecules and ions from Problem 21.17 have electrons donated by a heteroatom?arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
