ORGANIC CHEMISTRY-STUD.SOLNS.MAN+SG(LL)
ORGANIC CHEMISTRY-STUD.SOLNS.MAN+SG(LL)
4th Edition
ISBN: 9781119659587
Author: Klein
Publisher: WILEY
Question
Book Icon
Chapter 18, Problem 46PP

(a)

Interpretation Introduction

Interpretation:

The major product should be drawn and identified when treated with bromine in the presence of iron tribromide.

Concept introduction:

Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.

Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.

SN1 Reaction: The SN1 reaction is twostep process, leaving group leaves the molecule is first step and forms the more stable carbocation. Further, nucleophile attacks the carbocation and forms the final product in the second step. The rate of the reaction depends on the stability of the carbocation.

SN2 Reaction: The SN2 reaction is single step process, leaving group leaves the molecule and nucleophiles attack the molecule is single step process which is simultaneous process.

(b)

Interpretation Introduction

Interpretation:

The major product should be drawn and identified when treated with bromine in the presence of iron tribromide.

Concept introduction:

Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.

Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.

SN1 Reaction: The SN1 reaction is twostep process, leaving group leaves the molecule is first step and forms the more stable carbocation. Further, nucleophile attacks the carbocation and forms the final product in the second step. The rate of the reaction depends on the stability of the carbocation.

SN2 Reaction: The SN2 reaction is single step process, leaving group leaves the molecule and nucleophiles attack the molecule is single step process which is simultaneous process.

(c)

Interpretation Introduction

Interpretation:

The major product should be drawn and identified when treated with bromine in the presence of iron tribromide.

Concept introduction:

Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.

Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.

SN1 Reaction: The SN1 reaction is twostep process, leaving group leaves the molecule is first step and forms the more stable carbocation. Further, nucleophile attacks the carbocation and forms the final product in the second step. The rate of the reaction depends on the stability of the carbocation.

SN2 Reaction: The SN2 reaction is single step process, leaving group leaves the molecule and nucleophiles attack the molecule is single step process which is simultaneous process.

(d)

Interpretation Introduction

Interpretation:

The major product should be drawn and identified when treated with bromine in the presence of iron tribromide.

Concept introduction:

Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.

Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.

SN1 Reaction: The SN1 reaction is twostep process, leaving group leaves the molecule is first step and forms the more stable carbocation. Further, nucleophile attacks the carbocation and forms the final product in the second step. The rate of the reaction depends on the stability of the carbocation.

SN2 Reaction: The SN2 reaction is single step process, leaving group leaves the molecule and nucleophiles attack the molecule is single step process which is simultaneous process.

(e)

Interpretation Introduction

Interpretation:

The major product should be drawn and identified when treated with bromine in the presence of iron tribromide.

Concept introduction:

Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.

Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.

SN1 Reaction: The SN1 reaction is twostep process, leaving group leaves the molecule is first step and forms the more stable carbocation. Further, nucleophile attacks the carbocation and forms the final product in the second step. The rate of the reaction depends on the stability of the carbocation.

SN2 Reaction: The SN2 reaction is single step process, leaving group leaves the molecule and nucleophiles attack the molecule is single step process which is simultaneous process.

(f)

Interpretation Introduction

Interpretation:

The major product should be drawn and identified when treated with bromine in the presence of iron tribromide.

Concept introduction:

Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.

Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.

SN1 Reaction: The SN1 reaction is twostep process, leaving group leaves the molecule is first step and forms the more stable carbocation. Further, nucleophile attacks the carbocation and forms the final product in the second step. The rate of the reaction depends on the stability of the carbocation.

SN2 Reaction: The SN2 reaction is single step process, leaving group leaves the molecule and nucleophiles attack the molecule is single step process which is simultaneous process.

(g)

Interpretation Introduction

Interpretation:

The major product should be drawn and identified when treated with bromine in the presence of iron tribromide.

Concept introduction:

Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.

Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.

SN1 Reaction: The SN1 reaction is twostep process, leaving group leaves the molecule is first step and forms the more stable carbocation. Further, nucleophile attacks the carbocation and forms the final product in the second step. The rate of the reaction depends on the stability of the carbocation.

SN2 Reaction: The SN2 reaction is single step process, leaving group leaves the molecule and nucleophiles attack the molecule is single step process which is simultaneous process.

(h)

Interpretation Introduction

Interpretation:

The major product should be drawn and identified when treated with bromine in the presence of iron tribromide.

Concept introduction:

Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.

Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.

SN1 Reaction: The SN1 reaction is twostep process, leaving group leaves the molecule is first step and forms the more stable carbocation. Further, nucleophile attacks the carbocation and forms the final product in the second step. The rate of the reaction depends on the stability of the carbocation.

SN2 Reaction: The SN2 reaction is single step process, leaving group leaves the molecule and nucleophiles attack the molecule is single step process which is simultaneous process.

(i)

Interpretation Introduction

Interpretation:

The major product should be drawn and identified when treated with bromine in the presence of iron tribromide.

Concept introduction:

Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.

Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.

SN1 Reaction: The SN1 reaction is twostep process, leaving group leaves the molecule is first step and forms the more stable carbocation. Further, nucleophile attacks the carbocation and forms the final product in the second step. The rate of the reaction depends on the stability of the carbocation.

SN2 Reaction: The SN2 reaction is single step process, leaving group leaves the molecule and nucleophiles attack the molecule is single step process which is simultaneous process.

(j)

Interpretation Introduction

Interpretation:

The major product should be drawn and identified when treated with bromine in the presence of iron tribromide.

Concept introduction:

Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.

Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.

SN1 Reaction: The SN1 reaction is twostep process, leaving group leaves the molecule is first step and forms the more stable carbocation. Further, nucleophile attacks the carbocation and forms the final product in the second step. The rate of the reaction depends on the stability of the carbocation.

SN2 Reaction: The SN2 reaction is single step process, leaving group leaves the molecule and nucleophiles attack the molecule is single step process which is simultaneous process.

(k)

Interpretation Introduction

Interpretation:

The major product should be drawn and identified when treated with bromine in the presence of iron tribromide.

Concept introduction:

Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.

Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.

SN1 Reaction: The SN1 reaction is twostep process, leaving group leaves the molecule is first step and forms the more stable carbocation. Further, nucleophile attacks the carbocation and forms the final product in the second step. The rate of the reaction depends on the stability of the carbocation.

SN2 Reaction: The SN2 reaction is single step process, leaving group leaves the molecule and nucleophiles attack the molecule is single step process which is simultaneous process.

Blurred answer
Students have asked these similar questions
The data for the potential difference of a battery and its temperature are given in the table. Calculate the entropy change in J mol-1 K-1 (indicate the formulas used).Data: F = 96485 C mol-1
In a cell, the change in entropy (AS) can be calculated from the slope of the E° vs 1/T graph. The slope is equal to -AS/R, where R is the gas constant. Is this correct?
Using the Arrhenius equation, it is possible to establish the relationship between the rate constant (k) of a chemical reaction and the temperature (T), in Kelvin (K), the universal gas constant (R), the pre-exponential factor (A) and the activation energy (Ea). This equation is widely applied in studies of chemical kinetics, and is also widely used to determine the activation energy of reactions. In this context, the following graph shows the variation of the rate constant with the inverse of the absolute temperature, for a given chemical reaction that obeys the Arrhenius equation. Based on the analysis of this graph and the concepts acquired about the kinetics of chemical reactions, analyze the following statements:              I. The activation energy (Ea) varies with the temperature of the system.   II. The activation energy (Ea) varies with the concentration of the reactants.        III. The rate constant (K) varies proportionally with temperature.    IV. The value of the…

Chapter 18 Solutions

ORGANIC CHEMISTRY-STUD.SOLNS.MAN+SG(LL)

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY