Genetics: From Genes to Genomes
Genetics: From Genes to Genomes
6th Edition
ISBN: 9781259700903
Author: Leland Hartwell Dr., Michael L. Goldberg Professor Dr., Janice Fischer, Leroy Hood Dr.
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 18, Problem 29P

F. Port and S. Bullock at the University of Cambridge (UK) designed the elegant plasmid vector pCFD3 for the expression of sgRNAs in Drosophila. The following figure shows a part of this vector. The orange sequences are part of a strong promoter (transcription from this promoter starts at the G in bold—which must be present—and goes from left to right). The purple sequences are a portion of the tracrRNA component of the sgRNA. After cutting the pCFD3 plasmid with the restriction enzyme BbsI (whose recognition site is also shown in the following figure), you will replace the blue sequences in the figure with sequences that will allow the expression of an sgRNA that targets a Drosophila gene called NiPp1.

Chapter 18, Problem 29P, F. Port and S. Bullock at the University of Cambridge UK designed the elegant plasmid vector pCFD3 , example  1

The last part of the jigsaw puzzle you will need is the following sequence, which shows part of the NiPp1 gene including the triplet corresponding to the start codon. Capital letters are in the gene’s first exon with the coding region in blue; lowercase letters are in the first intron. The NiPp1 protein is 383 amino acids long. Your assignment is to generate a knockout allele of this gene by inducing Cas9 to produce a double-strand break into the gene that will be repaired imprecisely by nonhomologous end-joining (NHEJ).

Chapter 18, Problem 29P, F. Port and S. Bullock at the University of Cambridge UK designed the elegant plasmid vector pCFD3 , example  2

a. Identify the two PAM sites in this sequence. Which of these PAM sites would you want to use in order to produce a null allele of the NiPp1 gene? Why would you prefer this site?
b. If you targeted Cas9 to the proper location in the NiPp1 gene, and the resultant double-strand break was repaired imprecisely by NHEJ (so that a few—usually ≤6 bp are deleted or added at that location), about what percentage of the imprecisely repaired genes could you say with confidence would be null alleles? Explain.
c. Diagram the pCFD3 vector after it has been cut with the BbsI enzyme. Don’t worry about the small blue fragment that will be removed; the emphasis here is to show the 5′-overhangs that will be made.
d. Design two 24-nt DNA oligonucleotides that you could anneal together and clone into BbsI-cut pCFD3 vector so that the recombinant plasmid could express an sgRNA useful for making null mutations in the NiPp1 gene.
e. Show exactly where Cas9 would cut the NiPp1 gene.
f. Briefly outline what you would do with your recombinant plasmid to make a null mutation in the fly NiPp1 gene.
g. Briefly outline how you would modify this technique to generate a knockin allele in which the first amino acid in the NiPp1 protein after the initiating Met (that is, Thr) would be changed to Ala.
Blurred answer
Students have asked these similar questions
Molecular Biology A-C components of the question are corresponding to attached image labeled 1. D component of the question is corresponding to attached image labeled 2. For a eukaryotic mRNA, the sequences is as follows where AUGrepresents the start codon, the yellow is the Kozak sequence and (XXX) just represents any codonfor an amino acid (no stop codons here). G-cap and polyA tail are not shown A. How long is the peptide produced?B. What is the function (a sentence) of the UAA highlighted in blue?C. If the sequence highlighted in blue were changed from UAA to UAG, how would that affecttranslation? D. (1) The sequence highlighted in yellow above is moved to a new position indicated below. Howwould that affect translation? (2) How long would be the protein produced from this new mRNA? Thank you
Molecular Biology Question Explain why the cell doesn’t need 61 tRNAs (one for each codon). Please help. Thank you
Molecular Biology You discover a disease causing mutation (indicated by the arrow) that alters splicing of its mRNA. This mutation (a base substitution in the splicing sequence) eliminates a 3’ splice site resulting in the inclusion of the second intron (I2) in the final mRNA. We are going to pretend that this intron is short having only 15 nucleotides (most introns are much longer so this is just to make things simple) with the following sequence shown below in bold. The ( ) indicate the reading frames in the exons; the included intron 2 sequences are in bold. A. Would you expected this change to be harmful? ExplainB. If you were to do gene therapy to fix this problem, briefly explain what type of gene therapy youwould use to correct this.     Please help. Thank you

Chapter 18 Solutions

Genetics: From Genes to Genomes

Knowledge Booster
Background pattern image
Biology
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning
Text book image
Biology Today and Tomorrow without Physiology (Mi...
Biology
ISBN:9781305117396
Author:Cecie Starr, Christine Evers, Lisa Starr
Publisher:Cengage Learning
Text book image
Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning
Text book image
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Text book image
Case Studies In Health Information Management
Biology
ISBN:9781337676908
Author:SCHNERING
Publisher:Cengage
Text book image
Biology: The Dynamic Science (MindTap Course List)
Biology
ISBN:9781305389892
Author:Peter J. Russell, Paul E. Hertz, Beverly McMillan
Publisher:Cengage Learning
Bacterial Genomics and Metagenomics; Author: Quadram Institute;https://www.youtube.com/watch?v=_6IdVTAFXoU;License: Standard youtube license