Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 23RQ
To determine
The reason for the crowned roll always designed for a specific operation on a specific material.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
B
150 mm
120 mm
PROBLEM 15.193
The L-shaped arm BCD rotates about the z axis with a constant
angular velocity @₁ of 5 rad/s. Knowing that the 150-mm-
radius disk rotates about BC with a constant angular velocity
@2 of 4 rad/s, determine (a) the velocity of Point A, (b) the
acceleration of Point A.
Answers:
V₁ =-(0.600 m/s)i + (0.750 m/s)j - (0.600 m/s)k
a=-(6.15 m/s²)i- (3.00 m/s²)j
3
Answer:
002
PROBLEM 15.188
The rotor of an electric motor rotates at the constant rate
@₁ = 1800 rpm. Determine the angular acceleration of the rotor as the
motor is rotated about the y axis with a constant angular velocity 2
x of 6 rpm counterclockwise when viewed from the positive y axis.
α = (118.4 rad/s²)i
12 in..
10 in.
PROBLEM 15.187
At the instant considered the radar antenna shown rotates about
the origin of coordinates with an angular velocity
@ = ai + @j+wk Knowing that (VA) = 15 in./s,
(VB), 9 in./s, and (VB), = 18 in./s, determine (a) the angular
velocity of the antenna, (b) the velocity of point A.
B
10 in.
Answers:
=
(0.600 rad/s)i - (2.00 rad/s) j + (0.750 rad/s)k
V₁ = (20.0 in./s)i + (15.00 in./s) j + (24.0 in./s)k
Chapter 18 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 18 - Briefly describe the evolution of forming...Ch. 18 - What are some of the possible means of classifying...Ch. 18 - How are bulk deformation processes different from...Ch. 18 - Prob. 4RQCh. 18 - Prob. 5RQCh. 18 - Prob. 6RQCh. 18 - Prob. 7RQCh. 18 - Why is it undesirable to minimize friction between...Ch. 18 - Prob. 9RQCh. 18 - Prob. 10RQ
Ch. 18 - Prob. 11RQCh. 18 - Prob. 12RQCh. 18 - Prob. 13RQCh. 18 - Prob. 14RQCh. 18 - Why is foil almost always rolled on a cluster...Ch. 18 - Prob. 16RQCh. 18 - Prob. 17RQCh. 18 - Prob. 18RQCh. 18 - Prob. 19RQCh. 18 - Explain how hot�rolled products can have...Ch. 18 - What is mill scale, and how can it be removed?Ch. 18 - Discuss the problems in producing uniform...Ch. 18 - Prob. 23RQCh. 18 - How might the addition of horizontal tensions act...Ch. 18 - What are some other techniques to reduce roll...Ch. 18 - What is thermomechanical processing, and what are...Ch. 18 - Provide a concise description of the forging...Ch. 18 - What are some of the types of flow that can occur...Ch. 18 - Prob. 29RQCh. 18 - Prob. 30RQCh. 18 - Prob. 31RQCh. 18 - Prob. 32RQCh. 18 - Prob. 33RQCh. 18 - Prob. 34RQCh. 18 - Prob. 35RQCh. 18 - Prob. 36RQCh. 18 - Prob. 37RQCh. 18 - Prob. 38RQCh. 18 - Prob. 39RQCh. 18 - Describe some of the primary differences among...Ch. 18 - What are some common examples of impression�die...Ch. 18 - What are some of the significant requirements of...Ch. 18 - Why are different tolerances usually applied to...Ch. 18 - What are some of the roles played by lubricants in...Ch. 18 - What are some of the attractive features of...Ch. 18 - What types of product geometry can be produced by...Ch. 18 - What is upset forging?Ch. 18 - What are some of the typical products produced by...Ch. 18 - What types of products can be produced by...Ch. 18 - What are some of the attractive features of...Ch. 18 - How does roll forging differ from a conventional...Ch. 18 - Describe the swaging process.Ch. 18 - What kind of products are produced by swaging?Ch. 18 - How can the swaging process impart different sizes...Ch. 18 - What are some possible objectives of...Ch. 18 - Provide a concise definition of extrusion.Ch. 18 - What metals can be shaped by extrusion?Ch. 18 - What are some of the attractive features of the...Ch. 18 - What is the primary shape limitation of the...Ch. 18 - What is the primary benefit of indirect extrusion?Ch. 18 - What are some temperature considerations in hot...Ch. 18 - Why might lubricant selection be more critical in...Ch. 18 - What are some possible causes of surface cracks in...Ch. 18 - How might tubular products be made by extrusion?Ch. 18 - What types of products are made using a...Ch. 18 - Why can lubricants not be used in spider�mandrel...Ch. 18 - What are some of the attractive features of...Ch. 18 - What are some unique concerns and limitations of...Ch. 18 - What is the unique capability provided by...Ch. 18 - How is the feedstock pushed through the die in...Ch. 18 - Describe the Conform process of continuous...Ch. 18 - What types of feedstock can be used in continuous...Ch. 18 - How is wire, rod, and tube drawing different from...Ch. 18 - Why are rods generally drawn on draw benches,...Ch. 18 - Why is the reduction in area significantly...Ch. 18 - What is the difference between tube drawing and...Ch. 18 - For what types of products might a floating plug...Ch. 18 - What are some of the benefits of cold drawing of...Ch. 18 - What types of materials are used for...Ch. 18 - What is the benefit of a tandem wire drawing...Ch. 18 - What is cold forming?Ch. 18 - What types of products are produced by cold...Ch. 18 - What is impact extrusion and what variations...Ch. 18 - If a product contains a large�diameter head and...Ch. 18 - What are some of the attractive properties or...Ch. 18 - What process can be used to produce seamless pipe...Ch. 18 - What type of products can be made by the...Ch. 18 - What types of rivets can be used when there is...Ch. 18 - How is coining different from a process known as...Ch. 18 - Why might hubbing be an attractive way to produce...Ch. 18 - How might a peening operation increase the...Ch. 18 - What is burnishing?Ch. 18 - Prob. 1PCh. 18 - Consider the extrusion of a cylindrical billet,...Ch. 18 - The force required to compress a cylindrical solid...Ch. 18 - Prob. 4PCh. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - Prob. 7PCh. 18 - Prob. 8PCh. 18 - Based on the size, shape, and desired precision,...Ch. 18 - What types of engineering materials might be able...Ch. 18 - For each of the shape generation methods in part...Ch. 18 - Which of the combinations of part 4 do you feel...Ch. 18 - For this system, outline the specific steps that...Ch. 18 - For your proposed solution, would any additional...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3. An engine has three cylinders spaced at 120° to each other. The crank torque diagram can be simplified to a triangle having the following values: Angle 0° Torque (Nm) 0 (a) What is the mean torque? 60° 4500 180° 180° to 360° 0 0 (b) What moment of inertia of flywheel is required to keep the speed to within 180 ± 3 rpm? (c) If one cylinder of the engine is made inoperative and it is assumed that the torque for this cylinder is zero for all crank angles, determine the fluctuation in speed at 180rpm for the same flywheel. (a) 3375 Nm (b) 50kgm (c) ±21 rpmarrow_forwardProb 5. Determine the largest load P that can be applied to the frame without causing either the average normal stress or the average shear stress at section a-a to exceed o-150 MPa and 1-60 MPa, respectively. Member CB has a square cross section of 25 mm on each side. 2 m FAC 1.5 m Facarrow_forwardDerive the component transformation equations for tensors shown below where [C] = [BA] is the DCM (direction cosine matrix) from frame A to B. ^B [T] = [C]^A [T] [C]^Tarrow_forward
- Calculate for the vertical cross section moment of inertia for both Orientations 1 and 2 of a 1 x 1.5 in. horizontal hollow rectangular beam with wall thickness of t = 0.0625 in. Use the equation: I = ((bh^3)/12) - (((b-2t)(h-2t)^3)/12)arrow_forwardPlease answer 'yes' or 'no' and 'is' or 'is not' for the following:arrow_forwardConsider a large 23-cm-thick stainless steel plate (k = 15.1 W/m-K) in which heat is generated uniformly at a rate of 5 x 105 W/m³. Both sides of the plate are exposed to an environment at 30°C with a heat transfer coefficient of 60 W/m²K. The highest temperature will occur at surfaces of plate while the lowest temperature will occur at the midplane. Yes or No Yes Noarrow_forward
- My answers are incorrectarrow_forwardPicturearrow_forwardWhat is the weight of a 5-kg substance in N, kN, kg·m/s², kgf, Ibm-ft/s², and lbf? The weight of a 5-kg substance in N is 49.05 N. The weight of a 5-kg substance in kN is KN. The weight of a 5-kg substance in kg·m/s² is 49.05 kg-m/s². The weight of a 5-kg substance in kgf is 5.0 kgf. The weight of a 5-kg substance in Ibm-ft/s² is 11.02 lbm-ft/s². The weight of a 5-kg substance in lbf is 11.023 lbf.arrow_forward
- Mych CD 36280 kg. 0.36 givens Tesla truck frailer 2017 Model Vven 96154kph ronge 804,5km Cr Powertrain Across PHVAC rwheel 0.006 0.88 9M² 2 2kW 0.55M ng Zg Prated Trated Pair 20 0.95 1080 kW 1760 Nm 1,2 determine the battery energy required to meet the range when fully loaded determine the approximate time for the fully-loaded truck-trailor to accelerate from 0 to 60 mph while Ignoring vehicle load forcesarrow_forward12-217. The block B is sus- pended from a cable that is at- tached to the block at E, wraps around three pulleys, and is tied to the back of a truck. If the truck starts from rest when ID is zero, and moves forward with a constant acceleration of ap = 0.5 m/s², determine the speed of the block at D the instant x = 2 m. Neglect the size of the pulleys in the calcu- lation. When xƊ = 0, yc = 5 m, so that points C and D are at the Prob. 12-217 5 m yc =2M Xparrow_forwardsolve both and show matlab code auto controlsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License