Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 10RQ
To determine
The importance of controlling the finishing temperature of a hot rolling operations
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
P₂
7+1
*
P₁
ART
2 P (P₁ - P₂- Zgp)
21 / Prove that :-
m²
a
cda
A₂
==
*
Cde
actual
mip
Solution
Q1/ Show that (actual
02/ A simple iet
==
Cda
Cdf
х
Af
2/Y
-
Y+1/Y
2P(P1-P2-zxgxpr)
5. Determine the transfer function of G(s) = 01(s)/T₁(s) and 02(s)/T₁ for the mechanical system
shown in Figure Q5. (Hints: assume zero initial condition)
T₁(t) 01(t)
102(1)
Ол
N1
D1
D2
No. 1790220000
N2
Figure Q5
K2
Chapter 18 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 18 - Briefly describe the evolution of forming...Ch. 18 - What are some of the possible means of classifying...Ch. 18 - How are bulk deformation processes different from...Ch. 18 - Prob. 4RQCh. 18 - Prob. 5RQCh. 18 - Prob. 6RQCh. 18 - Prob. 7RQCh. 18 - Why is it undesirable to minimize friction between...Ch. 18 - Prob. 9RQCh. 18 - Prob. 10RQ
Ch. 18 - Prob. 11RQCh. 18 - Prob. 12RQCh. 18 - Prob. 13RQCh. 18 - Prob. 14RQCh. 18 - Why is foil almost always rolled on a cluster...Ch. 18 - Prob. 16RQCh. 18 - Prob. 17RQCh. 18 - Prob. 18RQCh. 18 - Prob. 19RQCh. 18 - Explain how hot�rolled products can have...Ch. 18 - What is mill scale, and how can it be removed?Ch. 18 - Discuss the problems in producing uniform...Ch. 18 - Prob. 23RQCh. 18 - How might the addition of horizontal tensions act...Ch. 18 - What are some other techniques to reduce roll...Ch. 18 - What is thermomechanical processing, and what are...Ch. 18 - Provide a concise description of the forging...Ch. 18 - What are some of the types of flow that can occur...Ch. 18 - Prob. 29RQCh. 18 - Prob. 30RQCh. 18 - Prob. 31RQCh. 18 - Prob. 32RQCh. 18 - Prob. 33RQCh. 18 - Prob. 34RQCh. 18 - Prob. 35RQCh. 18 - Prob. 36RQCh. 18 - Prob. 37RQCh. 18 - Prob. 38RQCh. 18 - Prob. 39RQCh. 18 - Describe some of the primary differences among...Ch. 18 - What are some common examples of impression�die...Ch. 18 - What are some of the significant requirements of...Ch. 18 - Why are different tolerances usually applied to...Ch. 18 - What are some of the roles played by lubricants in...Ch. 18 - What are some of the attractive features of...Ch. 18 - What types of product geometry can be produced by...Ch. 18 - What is upset forging?Ch. 18 - What are some of the typical products produced by...Ch. 18 - What types of products can be produced by...Ch. 18 - What are some of the attractive features of...Ch. 18 - How does roll forging differ from a conventional...Ch. 18 - Describe the swaging process.Ch. 18 - What kind of products are produced by swaging?Ch. 18 - How can the swaging process impart different sizes...Ch. 18 - What are some possible objectives of...Ch. 18 - Provide a concise definition of extrusion.Ch. 18 - What metals can be shaped by extrusion?Ch. 18 - What are some of the attractive features of the...Ch. 18 - What is the primary shape limitation of the...Ch. 18 - What is the primary benefit of indirect extrusion?Ch. 18 - What are some temperature considerations in hot...Ch. 18 - Why might lubricant selection be more critical in...Ch. 18 - What are some possible causes of surface cracks in...Ch. 18 - How might tubular products be made by extrusion?Ch. 18 - What types of products are made using a...Ch. 18 - Why can lubricants not be used in spider�mandrel...Ch. 18 - What are some of the attractive features of...Ch. 18 - What are some unique concerns and limitations of...Ch. 18 - What is the unique capability provided by...Ch. 18 - How is the feedstock pushed through the die in...Ch. 18 - Describe the Conform process of continuous...Ch. 18 - What types of feedstock can be used in continuous...Ch. 18 - How is wire, rod, and tube drawing different from...Ch. 18 - Why are rods generally drawn on draw benches,...Ch. 18 - Why is the reduction in area significantly...Ch. 18 - What is the difference between tube drawing and...Ch. 18 - For what types of products might a floating plug...Ch. 18 - What are some of the benefits of cold drawing of...Ch. 18 - What types of materials are used for...Ch. 18 - What is the benefit of a tandem wire drawing...Ch. 18 - What is cold forming?Ch. 18 - What types of products are produced by cold...Ch. 18 - What is impact extrusion and what variations...Ch. 18 - If a product contains a large�diameter head and...Ch. 18 - What are some of the attractive properties or...Ch. 18 - What process can be used to produce seamless pipe...Ch. 18 - What type of products can be made by the...Ch. 18 - What types of rivets can be used when there is...Ch. 18 - How is coining different from a process known as...Ch. 18 - Why might hubbing be an attractive way to produce...Ch. 18 - How might a peening operation increase the...Ch. 18 - What is burnishing?Ch. 18 - Prob. 1PCh. 18 - Consider the extrusion of a cylindrical billet,...Ch. 18 - The force required to compress a cylindrical solid...Ch. 18 - Prob. 4PCh. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - Prob. 7PCh. 18 - Prob. 8PCh. 18 - Based on the size, shape, and desired precision,...Ch. 18 - What types of engineering materials might be able...Ch. 18 - For each of the shape generation methods in part...Ch. 18 - Which of the combinations of part 4 do you feel...Ch. 18 - For this system, outline the specific steps that...Ch. 18 - For your proposed solution, would any additional...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A spring package with two springs and an external force, 200N. The short spring has a loin of 35 mm. Constantly looking for spring for short spring so that total compression is 35 mm (d). Known values: Long spring: Short spring:C=3.98 N/mm Lo=65mmLo=87.4mmF=c·fTotal compression is same for both spring. 200 = (3.98(c1) × 35) + (c₂ × 35) 200 = 139.3 + 35c₂ 200 - 139.3 = 35c₂ 60.7 = 35c₂ c₂ = 60.7/35 Short spring (c₂) = 1.73 N/mm According to my study book, the correct answer is 4.82N/mm What is wrong with the calculating?arrow_forwardWhat is the reason for this composition?arrow_forwardHomework: ANOVA Table for followed design B AB Dr -1 -1 1 (15.18,12) 1 -1 -1 (45.48.51) -1 1 -1 (25,28,19) 1 1 (75.75,81)arrow_forward
- 20. [Ans. 9; 71.8 mm] A semi-elliptical laminated spring is made of 50 mm wide and 3 mm thick plates. The length between the supports is 650 mm and the width of the band is 60 mm. The spring has two full length leaves and five graduated leaves. If the spring carries a central load of 1600 N, find: 1. Maximum stress in full length and graduated leaves for an initial condition of no stress in the leaves. 2. The maximum stress if the initial stress is provided to cause equal stress when loaded. [Ans. 590 MPa ; 390 MPa ; 450 MPa ; 54 mm] 3. The deflection in parts (1) and (2).arrow_forwardQ6/ A helical square section spring is set inside another, the outer spring having a free length of 35 mm greater than the inner spring. The dimensions of each spring are as follows: Mean diameter (mm) Side of square section (mm) Active turns Outer Inner Spring Spring 120 70 8 7 20 15 Determine the (1) Maximum deflection of the two springs and (2) Equivalent spring rate of the two springs after sufficient load has been applied to deflect the outer spring 60 mm. Use G = 83 GN/m².arrow_forwardQ2/ The bumper springs of a railway carriage are to be made of rectangular section wire. The ratio of the longer side of the wire to its shorter side is 1.5, and the ratio of mean diameter of spring to the longer side of wire is nearly equal to 6. Three such springs are required to bring to rest a carriage weighing 25 kN moving with a velocity of 75 m/min with a maximum deflection of 200 mm. Determine the sides of the rectangular section of the wire and the mean diameter of coils when the shorter side is parallel to the axis of the spring. The allowable shear stress is not to exceed 300 MPa and G = 84 kN/mm². Q6/ A belicalarrow_forward
- 11. A load of 2 kN is dropped axially on a close coiled helical spring, from a height of 250 mm. The spring has 20 effective turns, and it is made of 25 mm diameter wire. The spring index is 8. Find the maximum shear stress induced in the spring and the amount of compression produced. The modulus of rigidity for the material of the spring wire is 84 kN/mm². [Ans. 287 MPa; 290 mm]arrow_forwardWhat is the reason for this composition?arrow_forwardHomework: ANOVA Table for followed design B AB Dr -1 -1 1 (15.18,12) 1 -1 -1 (45.48.51) -1 1 -1 (25,28,19) 1 1 (75.75,81)arrow_forward
- S B Pin 6 mm Garrow_forwardMid-Term Exam 2024/2025 Post graduate/Applied Mechanics- Metallurgy Q1/ State the type of fault in the following case, and state the structure in which it will appear. АВСАВСВАСВАСАВСАВСarrow_forwardالثانية Babakt Momentum equation for Boundary Layer S SS -Txfriction dray Momentum equation for Boundary Layer What laws are important for resolving issues 2 How to draw. 3 What's Point about this.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Basic Fabrication Techniques; Author: Weld.com;https://www.youtube.com/watch?v=3OW7iRnC8Ck;License: Standard Youtube License