
Using data from Appendix 2, calculate

Interpretation:
The standard entropy change of the reaction and the entropy change of surroundings, for the given reaction and the spontaneity of the given reaction are to be determined.
Concept introduction:
The standard enthalpy change of the reaction,
Here,
Answer to Problem 23QP
Solution:
The standard entropy change of the reaction is
The entropy change of the surrounding is
The reaction isspontaneous.
The standard entropy change of the reaction is
The entropy change of the surrounding is
The reaction is not spontaneous.
The standard entropy change of the reaction is
The entropy change of the surrounding is
The reaction is not spontaneous.
The standard entropy change of the reaction is
The entropy change of the surrounding is
The reaction is spontaneous.
Explanation of Solution
a)
Calculate entropy change of the universe for the given reaction.
The entropy change of the universe for this reaction is calculated using the following expression:
Here,
The enthalpy change of the system
The standard enthalpy change of the reaction
Here,
From appendix 2, the standard enthalpy change of formation for the substances are as follows:
Substitute the standard enthalpy change of the formation value of the substance in the above expression,
The standard entropy change for this reaction is calculated using the following expression:
Substitute the value of
Therefore, the entropy change of the surrounding is
Calculate the standard entropy change of the given reaction.
The standard entropy change for this reaction is calculated using the following expression:
Here,
and
From appendix 2, the standard entropy values for the substances are as follows:
Substitute the standard entropy value of the substance in the above expression,
Therefore, the standard entropy change for this reaction is
Calculate the entropy change of the universe.
The entropy change of the universe is calculate using the following expression:
Substitute the value of
Therefore, entropy change of the universe for this reaction is
For the spontaneity of reaction, the value of
The entropy change of the universe for this reaction is positive.
Therefore, the reaction isspontaneous.
b)
Calculate entropy change of the universe for the given reaction.
The entropy change of the universe for this reaction is calculated using the following expression:
Here,
The enthalpy change of the system
The standard enthalpy change of the reaction
Here,
From appendix 2, the standard enthalpy change of the formation for the substances are as follows:
Substitute the standard enthalpy change of the formation value of the substances in the above expression.
The standard entropy change for this reaction is calculated using the following expression:
Substitute the value of
Therefore, the entropy change of the surrounding is
Calculate the standard entropy change of the given reaction.
The standard entropy change for this reaction is calculated using the following expression:
Here,
and
From appendix 2, the standard entropy value of the substances are as follows:
Substitute the standard entropy value of the substance in the above expression,
Therefore, the standard entropy change for this reaction is
Calculate the entropy change of the universe.
The entropy change of the universe is calculate using the following expression:
Substitute the value of
Therefore, entropy change of the universe for this reaction is
For the spontaneity of reaction, the value of
The entropy change of the universe for this reaction is negative.
Therefore, the reaction is not spontaneous.
c)
Calculate entropy change of the universe for the given reaction.
The entropy change of the universe for this reaction is calculated using the following expression:
Here,
The enthalpy change of the system
The standard enthalpy change of the reaction
Here,
From table 8.6, bond enthalpy of the elements are as follows:
Substitute the standard enthalpy change of the formation value of the substance in the above expression,
The standard entropy change for this reaction is calculated using the following expression:
Substitute the value of
Therefore, the entropy change of the surrounding is
Calculate the standard entropy change of the given reaction.
The standard entropy change for this reaction is calculated using the following expression:
Here,
and
From the appendix 2 the standard entropy value of the substances are as follows:
Substitute the standard entropy value of the substance in the above expression,
Therefore, the standard entropy change for this reaction is
Calculate the entropy change of the universe.
The entropy change of the universe is calculate using the following expression:
Substitute the value of
Therefore, entropy change of the universe for this reaction is
For the spontaneity of reaction, the value of
The entropy change of the universe for this reaction is negative.
Therefore, the reaction is not spontaneous.
d)
Calculate entropy change of the universe for the given reaction.
The entropy change of the universe for this reaction is calculated using the following expression:
Here,
The enthalpy change of the system
The standard enthalpy changes of the reaction
Here,
From appendix 2, the standard enthalpy change of the formation for the substances are as follows:
Substitute the standard enthalpy change of the formation value of the substances in the above expression,
The standard entropy change for this reaction is calculated using the following expression:
Substitute the value of
Therefore, the entropy change of the surrounding is
Calculate the standard entropy change of the given reaction.
The standard entropy change for this reaction is calculated using the following expression:
Here,
and
From appendix 2, the standard entropy value of the substances are as follows:
Substitute the standard entropy value of the substance in the above expression,
Therefore, the standard entropy change for this reaction is
Calculate the entropy change of the universe.
The entropy change of the universe is calculate using the following expression:
Substitute the value of
Therefore, entropy change of the universe for this reaction is
For the spontaneity of reaction, the value of
The entropy change of the universe for this reaction is positive.
Therefore, the reaction is spontaneous.
Want to see more full solutions like this?
Chapter 18 Solutions
EBK CHEMISTRY
- So the thing is im trying to memorize VESPR Shapes in order to be able to solve problems like so, and I need help with making circles like the second image that's in blue or using an x and y axis plane in order to memorize these and be able to solve those type of problems. Especially like the ones given in the top / first image. (180 , 120 , 109.5) Can you help me with this.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward2. (15 points) Draw an appropriate mechanism for the following reaction. H N. H* + H₂Oarrow_forward
- Draw a tripeptide of your choosing at pH 7. Have the N-terminus on the left and the C-terminus on the right. Then: Draw a triangle around the α-carbons. Draw a box around the R-groups. Circle the atoms capable of hydrogen bonding. Highlight the atoms involved in the formation of the peptide bonds. What type of structure have you drawn? (primary, secondary, tertiary or quaternary protein structure). make sure its a tripeptidearrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Don't used Ai solution and don't used hand raitingarrow_forward> Organic Functional Groups Naming and drawing alkyl halides structure CI Br CI CI Explanation Check 2 name 1-chloro-2,4,9-trimethylnonane CI 2-iodo-2,3-dimethylbutane FEB 19 € E M tv MacBook Airarrow_forwardCan you please explain to me this problem im very confused and lost. Help me step by step and in detail im soo lost.arrow_forward
- 2) There are many forms of cancer, all of which involve abnormal cell growth. The growth and production of cells, called cell proliferation, is known to involve an enzyme called protein farnesyltransferase (PFTase). It is thought that inhibitors pf PFTase may be useful as anticancer drugs. The following molecule showed moderate activity as a potential PFTase inhibitor. Draw all stereoisomers of this compound. HO OHarrow_forwardConsidering rotation around the bond highlighted in red, draw the Newman projection for the most stable and least stable conformations when viewed down the red bond in the direction of the arrow. Part 1 of 2 H₁₂C H H Draw the Newman projection for the most stable conformation. Select a template to begin. Part 2 of 2 Draw the Newman projection for the least stable conformation. G 心arrow_forwardpersonality of each of them in terms of nucleophile vs. electrophile (some can be considered acids/bases but we are not looking at that here). Note you may have to use your growing intuition to figure out the personality of one of the molecules below but I believe in you! Rationalize it out based on what we have called strong versus weak electrophiles in past mechanisms. Consider using the memes below to help guide your understanding! A OH O B CH3 C Molecule A: [Select] Molecule B: [Select] Molecule C: [Select] Molecule D: [Select] > H D OHarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





