
Using data from Appendix 2, calculate

Interpretation:
The standard entropy change of the reaction and the entropy change of surroundings, for the given reaction and the spontaneity of the given reaction are to be determined.
Concept introduction:
The standard enthalpy change of the reaction,
Here,
Answer to Problem 23QP
Solution:
The standard entropy change of the reaction is
The entropy change of the surrounding is
The reaction isspontaneous.
The standard entropy change of the reaction is
The entropy change of the surrounding is
The reaction is not spontaneous.
The standard entropy change of the reaction is
The entropy change of the surrounding is
The reaction is not spontaneous.
The standard entropy change of the reaction is
The entropy change of the surrounding is
The reaction is spontaneous.
Explanation of Solution
a)
Calculate entropy change of the universe for the given reaction.
The entropy change of the universe for this reaction is calculated using the following expression:
Here,
The enthalpy change of the system
The standard enthalpy change of the reaction
Here,
From appendix 2, the standard enthalpy change of formation for the substances are as follows:
Substitute the standard enthalpy change of the formation value of the substance in the above expression,
The standard entropy change for this reaction is calculated using the following expression:
Substitute the value of
Therefore, the entropy change of the surrounding is
Calculate the standard entropy change of the given reaction.
The standard entropy change for this reaction is calculated using the following expression:
Here,
and
From appendix 2, the standard entropy values for the substances are as follows:
Substitute the standard entropy value of the substance in the above expression,
Therefore, the standard entropy change for this reaction is
Calculate the entropy change of the universe.
The entropy change of the universe is calculate using the following expression:
Substitute the value of
Therefore, entropy change of the universe for this reaction is
For the spontaneity of reaction, the value of
The entropy change of the universe for this reaction is positive.
Therefore, the reaction isspontaneous.
b)
Calculate entropy change of the universe for the given reaction.
The entropy change of the universe for this reaction is calculated using the following expression:
Here,
The enthalpy change of the system
The standard enthalpy change of the reaction
Here,
From appendix 2, the standard enthalpy change of the formation for the substances are as follows:
Substitute the standard enthalpy change of the formation value of the substances in the above expression.
The standard entropy change for this reaction is calculated using the following expression:
Substitute the value of
Therefore, the entropy change of the surrounding is
Calculate the standard entropy change of the given reaction.
The standard entropy change for this reaction is calculated using the following expression:
Here,
and
From appendix 2, the standard entropy value of the substances are as follows:
Substitute the standard entropy value of the substance in the above expression,
Therefore, the standard entropy change for this reaction is
Calculate the entropy change of the universe.
The entropy change of the universe is calculate using the following expression:
Substitute the value of
Therefore, entropy change of the universe for this reaction is
For the spontaneity of reaction, the value of
The entropy change of the universe for this reaction is negative.
Therefore, the reaction is not spontaneous.
c)
Calculate entropy change of the universe for the given reaction.
The entropy change of the universe for this reaction is calculated using the following expression:
Here,
The enthalpy change of the system
The standard enthalpy change of the reaction
Here,
From table 8.6, bond enthalpy of the elements are as follows:
Substitute the standard enthalpy change of the formation value of the substance in the above expression,
The standard entropy change for this reaction is calculated using the following expression:
Substitute the value of
Therefore, the entropy change of the surrounding is
Calculate the standard entropy change of the given reaction.
The standard entropy change for this reaction is calculated using the following expression:
Here,
and
From the appendix 2 the standard entropy value of the substances are as follows:
Substitute the standard entropy value of the substance in the above expression,
Therefore, the standard entropy change for this reaction is
Calculate the entropy change of the universe.
The entropy change of the universe is calculate using the following expression:
Substitute the value of
Therefore, entropy change of the universe for this reaction is
For the spontaneity of reaction, the value of
The entropy change of the universe for this reaction is negative.
Therefore, the reaction is not spontaneous.
d)
Calculate entropy change of the universe for the given reaction.
The entropy change of the universe for this reaction is calculated using the following expression:
Here,
The enthalpy change of the system
The standard enthalpy changes of the reaction
Here,
From appendix 2, the standard enthalpy change of the formation for the substances are as follows:
Substitute the standard enthalpy change of the formation value of the substances in the above expression,
The standard entropy change for this reaction is calculated using the following expression:
Substitute the value of
Therefore, the entropy change of the surrounding is
Calculate the standard entropy change of the given reaction.
The standard entropy change for this reaction is calculated using the following expression:
Here,
and
From appendix 2, the standard entropy value of the substances are as follows:
Substitute the standard entropy value of the substance in the above expression,
Therefore, the standard entropy change for this reaction is
Calculate the entropy change of the universe.
The entropy change of the universe is calculate using the following expression:
Substitute the value of
Therefore, entropy change of the universe for this reaction is
For the spontaneity of reaction, the value of
The entropy change of the universe for this reaction is positive.
Therefore, the reaction is spontaneous.
Want to see more full solutions like this?
Chapter 18 Solutions
EBK CHEMISTRY
- Draw the titration curve of (i) weak acid vs. strong base; (ii) weak acid vs. weakbase; (iii) diprotic acid with strong base (iii) triprotic acid with strong base.arrow_forwardComplete the reaction in the drawing area below by adding the major products to the right-hand side. If there won't be any products, because nothing will happen under these reaction conditions, check the box under the drawing area instead. Note: if the products contain one or more pairs of enantiomers, don't worry about drawing each enantiomer with dash and wedge bonds. Just draw one molecule to represent each pair of enantiomers, using line bonds at the chiral center. More... No reaction. my ㄖˋ + 1. Na O Me Click and drag to start drawing a structure. 2. H +arrow_forwardPredict the intermediate 1 and final product 2 of this organic reaction: NaOMe H+ + 1 2 H H work up You can draw 1 and 2 in any arrangement you like. Note: if either 1 or 2 consists of a pair of enantiomers, just draw one structure using line bonds instead of 3D (dash and wedge) bonds at the chiral center. Click and drag to start drawing a structure. X $ dmarrow_forward
- Predict the major products of this organic reaction: 1. NaH (20°C) 2. CH3Br ? Some notes: • Draw only the major product, or products. You can draw them in any arrangement you like. • Be sure to use wedge and dash bonds where necessary, for example to distinguish between major products that are enantiomers. • If there are no products, just check the box under the drawing area. No reaction. Click and drag to start drawing a structure. G Crarrow_forwardPredict the major products of this organic reaction: 1. LDA (-78°C) ? 2. Br Some notes: • Draw only the major product, or products. You can draw them in any arrangement you like. . • Be sure to use wedge and dash bonds where necessary, for example to distinguish between major products that are enantiomers. • If there are no products, just check the box under the drawing area. No reaction. Click and drag to start drawing a structure. Xarrow_forwardPlease draw the structuresarrow_forward
- Draw the missing intermediates 1 and 2, plus the final product 3, of this synthesis: 0 1. Eto 1. Eto- 1 2 2. MeBr 2. EtBr H3O+ A 3 You can draw the three structures in any arrangement you like. Explanation Check Click and drag to start drawing a structure.arrow_forwardDraw the missing intermediate 1 and final product 2 of this synthesis: 1. MeO- H3O+ 1 2 2. PrBr Δ You can draw the two structures in any arrangement you like. Click and drag to start drawing a structure.arrow_forwardWhat is the differences between: Glyceride and phosphoglyceride Wax and Fat Soap and Fatty acid HDL and LDL cholesterol Phospho lipids and sphingosine What are the types of lipids? What are the main lipid components of membrane structures? How could lipids play important rules as signaling molecules and building units? The structure variety of lipids makes them to play significant rules in our body, conclude breifly on this statement.arrow_forward
- What is the differences between DNA and RNA for the following: - structure - function - type What is the meaning of: - replication - transcription - translation show the base pair connection(hydrogen bond) in DNA and RNAarrow_forwardWhat is the IP for a amino acid- give an example what are the types of amino acids What are the structures of proteins The N-Terminal analysis by the Edman method shows saralasin contains sarcosine at the N-terminus. Partial hydrolysis of saralasin with dilute hydrochloric acid yields the following fragments: Try-Val-His Sar-Arg-Val His-Pro-Ala Val- Tyr- Val Arg-Val-Tyr What is the structure of saralasin?arrow_forwardWhat is the IP for a amino acid- give an example what are the types of amino acids What are the structures of proteins The N-Terminal analysis by the Edman method shows saralasin contains sarcosine at the N-terminus. Partial hydrolysis of saralasin with dilute hydrochloric acid yields the following fragments: Try-Val-His Sar-Arg-Val His-Pro-Ala Val- Tyr- Val Arg-Val-Tyr What is the structure of saralasin?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





