For the given reaction the value of ΔG o and K SP has to be calculated at 25 o C . Concept introduction: Standard free energy change: Standard free energy change is measured by subtracting the product of temperature and standard entropy change from the standard enthalpy change of a system. ΔG o = ΔH o - TΔS o where, ΔG o - standard free energy change ΔH o - standard enthalpy change ΔS o - standard entropy change and T - temperature . Relationship between Δ G o a n d K : The relationship between free energy change and equilibrium constant is given by ΔG o = -RTlnK where, ΔG o - standard free energy change R - gas constant T - temperature and K - equilibrium constant . To calculate: the value of ΔG o and K SP
For the given reaction the value of ΔG o and K SP has to be calculated at 25 o C . Concept introduction: Standard free energy change: Standard free energy change is measured by subtracting the product of temperature and standard entropy change from the standard enthalpy change of a system. ΔG o = ΔH o - TΔS o where, ΔG o - standard free energy change ΔH o - standard enthalpy change ΔS o - standard entropy change and T - temperature . Relationship between Δ G o a n d K : The relationship between free energy change and equilibrium constant is given by ΔG o = -RTlnK where, ΔG o - standard free energy change R - gas constant T - temperature and K - equilibrium constant . To calculate: the value of ΔG o and K SP
Solution Summary: The author explains the relationship between free energy change and equilibrium constant.
For the given reaction the value of ΔGoandKSP has to be calculated at 25oC.
Concept introduction:
Standard free energy change:
Standard free energy change is measured by subtracting the product of temperature and standard entropy change from the standard enthalpy change of a system.
How much energy does it take to raise the temperature of 1.0 mol H2O(g) from 100 °C to 200 °C at constant volume? Consider only translational and rotational contributions to the heat capacity. Hint: Use high-temp limit for non-linear molecule when calculating rotational contribution.
what was the pH of gastric juice obtained 5.0ml sample of gastric juice taken from a patient several hours after a meal and titrated the juice with 0,2M NaOH t neutrality the neutralization of gastric HCL required 5.0ml NaOH
what was the pH of gastric juice?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY