(a)
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(a)
Explanation of Solution
To explain: The change in standard free energy for the given reaction
Given reaction
The relationship between
Above equation shows that, if the temperature remains constant then the free energy change will remains constant.
(b)
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(b)
Explanation of Solution
To explain: The change in free energy for the given reaction
Given reaction
The relationship between
Above equation shows that, if the value of reaction quotient changes then the value of free energy also change.
(c)
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(c)
Explanation of Solution
To explain: The spontaneity of the given reaction
Given reaction and information
Since, the value of equilibrium constant is very large, the given reaction is spontaneous.
(d)
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(d)
Explanation of Solution
To check: The given statement
Given statement
The given statement is not correct. At equilibrium the value of free energy is zero, but the value of standard free energy change is constant. Hence, the given statement is not true.
(e)
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(e)
Explanation of Solution
To check: The composition of the mixture at equilibrium
Given reaction
The value of equilibrium constant is very large, so at equilibrium the composition will mostly the product side
(f)
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(f)
Explanation of Solution
To give: The values of
Given reaction
For the reverse reaction,
At equilibrium, the value of free energy change is zero. The reaction mixture will mostly reactant side
The given reverse reaction is non-spontaneous.
Want to see more full solutions like this?
Chapter 18 Solutions
Bundle: General Chemistry, Loose-leaf Version, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- what is the drawn mechanism for diethyl carbonate and 4 - bromo - N, N -dimethylaniline to create crystal violet?arrow_forwardWhich of the following compounds are constitutional isomers of each other? I and II O II and III O III and IV OI and IV O II and IV CI H CI H CI H H CI H-C-C-CI C-C-C-CI H-C-C-CI H-C-C-CI H CI Ĥ ĆI A A Ĥ ĆI || IVarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Q1: Curved Arrows, Bronsted Acids & Bases, Lewis Acids & Bases Considering the following reactions: a) Predict the products to complete the reactions. b) Use curved electron-pushing arrows to show the mechanism for the reaction in the forward direction. Redraw some of the compounds to explicitly illustrate all bonds that are broken and all bonds that are formed. c) Label Bronsted acids and bases in the left side of the reactions. Label conjugate acids and bases in the right side of the reactions. d) Label Lewis acids and bases, nucleophiles and electrophiles in the left side of the reactions. A. + OH CH30: OH B. + HBr C. H₂SO4 D. CF 3. CH 3 + HCI N H fluoxetine antidepressant 1↓ JDownloadarrow_forwardDon't used Ai solutionarrow_forwardPart 3: AHm,system Mass of 1.00 M HCI Vol. of 1.00 M HCI Mass of NaOH(s) Total Mass in Calorimeter Mole product if HCI limiting reactant Trial 1 62.4009 1.511g Mole product if NaOH limiting reactant Limiting reactant Initial Temperature Final Temperature 23.8°C 37.6°C Change in Temperature AHm,system (calculated) Average AHm,system (calculated) (calculated) (calculated) Trial 2 64.006g 1.9599 (calculated) (calculated) (calculated) (calculated) (calculated) (calculated) 24.7°C 41.9°C (calculated) (calculated) (2 pts. each)arrow_forward
- 1.) Using the graph below (including the line equation of y = -1.823x - 0.0162) What is the numerical value for the slope shown? 2.) What are the Unit(s) associated with the slope of the line shown? for we all remember that numerical data always has units. 3.) What would be a good title for this graph and explain your choice. 0.00 0.0 02 0.4 10.6 08 10 12 -0.20 -0.40 -0.60 -0.80 Temp, freezing, in degrees Celcius 5-1.00 -1.20 -1.40 -1:60 y=-1.823x-0.0162 -180 -2.00 Concentration of Sucrose (m)arrow_forwardDon't used Ai solutionarrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling. Please label in the image, so it fits explanation. I am still very unsure I undertand this.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning