Review. The top end of a yo-yo string is held stationary. The yo-yo itself is much more massive than the string. It starts from rest and moves down with constant acceleration 0.800 m/s 2 as it unwinds from the string. The rubbing of the string against the edge of the yo-yo excites transverse standing-wave vibrations in the string. Both ends of the string are nodes even as the length of the string increases. Consider the instant 1.20 s after the motion begins from rest. (a) Show that the rate of change with time of the wavelength of the fundamental mode of oscillation is 1.92 m/s. (b) What if? Is the rate of change of the wavelength of the second harmonic also 1.92 m/s at this moment? Explain your answer. (c) What if? The experiment is repeated after more mass has been added to the yo-yo body. The mass distribution is kept the same so that the yo-yo still moves with downward acceleration 0.800 m/s 2 . At the 1.20-s point in this case, is the rate of change of the fundamental wavelength of the string vibration still equal to 1.92 m/s? Explain. (d) Is the rate of change of the second harmonic wavelength the same as in part (b)? Explain.
Review. The top end of a yo-yo string is held stationary. The yo-yo itself is much more massive than the string. It starts from rest and moves down with constant acceleration 0.800 m/s 2 as it unwinds from the string. The rubbing of the string against the edge of the yo-yo excites transverse standing-wave vibrations in the string. Both ends of the string are nodes even as the length of the string increases. Consider the instant 1.20 s after the motion begins from rest. (a) Show that the rate of change with time of the wavelength of the fundamental mode of oscillation is 1.92 m/s. (b) What if? Is the rate of change of the wavelength of the second harmonic also 1.92 m/s at this moment? Explain your answer. (c) What if? The experiment is repeated after more mass has been added to the yo-yo body. The mass distribution is kept the same so that the yo-yo still moves with downward acceleration 0.800 m/s 2 . At the 1.20-s point in this case, is the rate of change of the fundamental wavelength of the string vibration still equal to 1.92 m/s? Explain. (d) Is the rate of change of the second harmonic wavelength the same as in part (b)? Explain.
Review. The top end of a yo-yo string is held stationary. The yo-yo itself is much more massive than the string. It starts from rest and moves down with constant acceleration 0.800 m/s2 as it unwinds from the string. The rubbing of the string against the edge of the yo-yo excites transverse standing-wave vibrations in the string. Both ends of the string are nodes even as the length of the string increases. Consider the instant 1.20 s after the motion begins from rest. (a) Show that the rate of change with time of the wavelength of the fundamental mode of oscillation is 1.92 m/s. (b) What if? Is the rate of change of the wavelength of the second harmonic also 1.92 m/s at this moment? Explain your answer. (c) What if? The experiment is repeated after more mass has been added to the yo-yo body. The mass distribution is kept the same so that the yo-yo still moves with downward acceleration 0.800 m/s2. At the 1.20-s point in this case, is the rate of change of the fundamental wavelength of the string vibration still equal to 1.92 m/s? Explain. (d) Is the rate of change of the second harmonic wavelength the same as in part (b)? Explain.
23.
What is the velocity of a beam of electrons that goes undeflected when passing through perpendicular electric and magnetic fields of magnitude 8.8 X 103 V/m and 7.5 X 10-3 T. respectively? What is the radius of the electron orbit if the electric field is turned off?
10.
A light bulb emits 25.00 W of power as visible light. What are the average electric and magnetic fields from the light at a distance of 2.0 m?
9.
Some 1800 years ago Roman soldiers effectively used slings as deadly weapons. The length of these slings averaged about 81 cm and the lead shot that they used weighed about 30 grams. If in the wind up to a release, the shot rotated around the Roman slinger with a period of .15 seconds.
Find the maximum acceleration of the shot before being released in m/s^2 and report it to two significant figures.
Chapter 18 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.