
(a)
Interpretation:
The standard free energy
Concept Introduction:
Free energy
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter
(a)

Explanation of Solution
The equilibrium constant is related to the to the standard free energy change by the given equation (1).
(b)
Interpretation:
The equilibrium constant
Concept Introduction:
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter
Where,
The calculate the standard free
(b)

Explanation of Solution
First calculate the equilibrium constant (
Given
(c)
Interpretation:
The nitric oxide starting formation has to determine.
Concept Introduction:
Thermodynamics is the branch of science that relates heat and energy in a system. The four laws of thermodynamics explain the fundamental quantities such as temperature, energy and randomness in a system. Entropy is the measure of randomness in a system. For a spontaneous process there is always a positive change in entropy. Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
Where,
(c)

Explanation of Solution
We calculate the enthalpy changes for given reaction
(d)
Interpretation:
The lighting helps to produce a better crop, the reason behind this has to explained.
Concept Introduction:
Thermodynamics is the branch of science that relates heat and energy in a system. The four laws of thermodynamics explain the fundamental quantities such as temperature, energy and randomness in a system. Entropy is the measure of randomness in a system. For a spontaneous process there is always a positive change in entropy. Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. In non-spontaneous reaction there is an increase of free energy in the system.
Non-spontaneous reaction: This type of reaction explain as, endergonic reaction (mean by heat absorption non-spontaneous process) or unfavourable reaction in a
(d)

Explanation of Solution
The lighting promotes the formation of
Want to see more full solutions like this?
Chapter 18 Solutions
EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
- Draw the products formed when the following alkene is treated with 03 followed by Zn, H₂O. Be sure to answer all parts. draw structure ... smaller molar mass product draw structure ... larger molar mass productarrow_forwardComplete the two step reaction show the mechanism for all steps.arrow_forwardIdentify whether the reaction would proceed as a E1 or E2 mechanism.arrow_forward
- Draw the mechanism using the arrows on conventions, including all formal charges and correct arrows. If stereochemical distinction can be made they should be included in the structure of the products.arrow_forwardDraw the epoxide formed when the following alkene is treated with mCPBA. Click the "draw structure" button to launch the drawing utility. draw structure ...arrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation Check CF3 (Choose one) OH (Choose one) H (Choose one) (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacyarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





