UNIVERSITY PHYSICS UCI PKG
11th Edition
ISBN: 9781323575208
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 18.65P
A sealed box contains a monatomic ideal gas. The number of gas atoms per unit volume is 5.00 × 1020 atoms/cm3, and the average translational kinetic energy of each atom is 1.80 × 10−23 J. (a) What is the gas pressure? (b) If the gas is neon (molar mass 20.18 g/mol), what is υrms for the gas atoms?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sealed box contains a monatomic ideal gas. The number of gas atoms per unit volume is 6.31×1020 atoms/cm3, and the average translational kinetic energy of each atom is 1.20×10−23 J .
What is the gas pressure?
p = ? Pa
If the gas is neon (molar mass 20.18 g/mol ), what is vrms for the gas atoms?
Vrms = ____ ? _____ units
Two moles of an ideal gas are placed in a container whose volume is 3.1 x 10-3 m3. The absolute pressure of the gas is 5.5 x 105 Pa. What is the average translational kinetic energy of a molecule of the gas?
2.97 moles of an ideal gas are placed in a container whose volume is 8.35 x10−3 m3. The absolute pressure of the gas is 7.2 x105 Pa. What is the average translational kinetic energy of a molecule of the gas?
Chapter 18 Solutions
UNIVERSITY PHYSICS UCI PKG
Ch. 18.1 - Rank the following ideal gases in order from...Ch. 18.2 - Prob. 18.2TYUCh. 18.3 - Rank the following gases in order from (a) highest...Ch. 18.4 - A cylinder with a fixed volume contains hydrogen...Ch. 18.5 - A quantity of gas containing N molecules has a...Ch. 18.6 - The average atmospheric pressure on Mars is 6.0 ...Ch. 18 - Section 18.1 states that ordinarily, pressure,...Ch. 18 - In the ideal-gas equation, could an equivalent...Ch. 18 - When a car is driven some distance, the air...Ch. 18 - The coolant in an automobile radiator is kept at a...
Ch. 18 - Unwrapped food placed in a freezer experiences...Ch. 18 - A group of students drove from their university...Ch. 18 - The derivation of the ideal-gas equation included...Ch. 18 - A rigid, perfectly insulated container has a...Ch. 18 - (a) Which has more atoms: a kilogram of hydrogen...Ch. 18 - Use the concepts of the kinetic-molecular model to...Ch. 18 - The proportions of various gases in the earths...Ch. 18 - Comment on the following statement: When two gases...Ch. 18 - Prob. 18.13DQCh. 18 - The temperature of an ideal gas is directly...Ch. 18 - If the pressure of an ideal monatomic gas is...Ch. 18 - In deriving the ideal-gas equation from the...Ch. 18 - Imagine a special air filter placed in a window of...Ch. 18 - Prob. 18.18DQCh. 18 - Consider two specimens of ideal gas at the same...Ch. 18 - The temperature of an ideal monatomic gas is...Ch. 18 - Prob. 18.21DQCh. 18 - (a) If you apply the same amount of heat to 1.00...Ch. 18 - Prob. 18.23DQCh. 18 - In a gas that contains N molecules, is it accurate...Ch. 18 - The atmosphere of the planet Mars is 95.3% carbon...Ch. 18 - Prob. 18.26DQCh. 18 - Ice is slippery to walk on, and especially...Ch. 18 - Hydrothermal vents are openings in the ocean floor...Ch. 18 - The dark areas on the moons surface are called...Ch. 18 - In addition to the normal cooking directions...Ch. 18 - A 20.0-L tank contains 4.86 104 kg of helium at...Ch. 18 - Helium gas with a volume of 3.20 L, under a...Ch. 18 - A cylindrical tank has a tight-fitting piston that...Ch. 18 - A 3.00-L lank contains air at 3.00 atm and 20.0C....Ch. 18 - Planetary Atmospheres. (a) Calculate the density...Ch. 18 - You have several identical balloons. You...Ch. 18 - A Jaguar XK8 convertible has an eight-cylinder...Ch. 18 - A welder using a tank of volume 0.0750 m3 fills it...Ch. 18 - A large cylindrical tank contains 0.750 m3 of...Ch. 18 - An empty cylindrical canister 1.50 m long and 90.0...Ch. 18 - The gas inside a balloon will always have a...Ch. 18 - An ideal gas has a density of 1.33 106 g/cm3 at...Ch. 18 - If a certain amount of ideal gas occupies a volume...Ch. 18 - A diver observes a bubble of air rising from the...Ch. 18 - A metal tank with volume 3.10 L will burst if the...Ch. 18 - Three moles of an ideal gas are in a rigid cubical...Ch. 18 - With the assumptions of Example 18.4 (Section...Ch. 18 - With the assumption that the air temperature is a...Ch. 18 - (a) Calculate the mass of nitrogen present in a...Ch. 18 - At an altitude of 11,000 m (a typical cruising...Ch. 18 - Prob. 18.21ECh. 18 - Prob. 18.22ECh. 18 - Modern vacuum pumps make it easy to attain...Ch. 18 - The Lagoon Nebula (Fig. E18.24) is a cloud of...Ch. 18 - In a gas at standard conditions, what is the...Ch. 18 - How Close Together Are Gas Molecules? Consider an...Ch. 18 - (a) What is the total translational kinetic energy...Ch. 18 - A flask contains a mixture of neon (Ne), krypton...Ch. 18 - We have two equal-size boxes, A and B. Each box...Ch. 18 - A container with volume 1.64 L is initially...Ch. 18 - Prob. 18.31ECh. 18 - Martian Climate. The atmosphere of Mars is mostly...Ch. 18 - Prob. 18.33ECh. 18 - Calculate the mean free path of air molecules at...Ch. 18 - At what temperature is the root-mean-square speed...Ch. 18 - Prob. 18.36ECh. 18 - Prob. 18.37ECh. 18 - Perfectly rigid containers each hold n moles of...Ch. 18 - (a) Compute the specific heat at constant volume...Ch. 18 - Prob. 18.40ECh. 18 - Prob. 18.41ECh. 18 - For a gas of nitrogen molecules (N2), what must...Ch. 18 - Prob. 18.43ECh. 18 - Meteorology. The vapor pressure is the pressure of...Ch. 18 - Calculate the volume of 1.00 mol of liquid water...Ch. 18 - A physics lecture room at 1.00 atm and 27.0C has a...Ch. 18 - CP BIO The Effect of Altitude on the Lungs. (a)...Ch. 18 - CP BIO The Bends. If deep-sea divers rise to the...Ch. 18 - CP A hot-air balloon stays aloft because hot air...Ch. 18 - In an evacuated enclosure, a vertical cylindrical...Ch. 18 - A cylinder 1.00 m tall with inside diameter 0.120...Ch. 18 - CP During a test dive in 1939, prior to being...Ch. 18 - Atmosphere or Titan. Titan, the largest satellite...Ch. 18 - Pressure on Venus. At the surface of Venus the...Ch. 18 - An automobile tire has a volume of 0.0150 m3 on a...Ch. 18 - A flask with a volume of 1.50 L, provided with a...Ch. 18 - CP A balloon of volume 750 m3 is to be filled with...Ch. 18 - A vertical cylindrical tank contains 1.80 mol of...Ch. 18 - CP A large tank of water has a hose connected to...Ch. 18 - CP A light, plastic sphere with mass m = 9.00 g...Ch. 18 - Prob. 18.61PCh. 18 - BIO A person at rest inhales 0.50 L of air with...Ch. 18 - You have two identical containers, one containing...Ch. 18 - The size of an oxygen molecule is about 2.0 1010...Ch. 18 - A sealed box contains a monatomic ideal gas. The...Ch. 18 - Helium gas is in a cylinder that has rigid walls....Ch. 18 - You blow up a spherical balloon to a diameter of...Ch. 18 - CP (a) Compute the increase in gravitational...Ch. 18 - Prob. 18.69PCh. 18 - Prob. 18.70PCh. 18 - It is possible to make crystalline solids that are...Ch. 18 - Hydrogen on the Sun. The surface of the sun has a...Ch. 18 - Prob. 18.73PCh. 18 - Planetary Atmospheres. (a) The temperature near...Ch. 18 - Prob. 18.75PCh. 18 - Prob. 18.76PCh. 18 - CALC (a) Explain why in a gas of N molecules, the...Ch. 18 - Prob. 18.78PCh. 18 - CP Oscillations of a Piston. A vertical cylinder...Ch. 18 - Prob. 18.80PCh. 18 - DATA The Dew Point and Clouds. The vapor pressure...Ch. 18 - DATA The statistical quantities average value and...Ch. 18 - CP Dark Nebulae and the Interstellar Medium. The...Ch. 18 - CALC Earths Atmosphere. In t he troposphere, the...Ch. 18 - Prob. 18.85PPCh. 18 - Estimate the ratio of the thermal conductivity of...Ch. 18 - The rate of effusionthat is, leakage of a gas...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The number of transistors in the integrated circuit in scientific notation.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
A flat surface with area 2.0 m2 is in a uniform 850-N/C electric field. Find the electric flux through the surf...
Essential University Physics: Volume 2 (3rd Edition)
Many dry cereals are fortified with iron, which is added to the cereal in the form of small iron particles. How...
Conceptual Integrated Science
The Age of Earth. Some people still question whether we have a reasonable knowledge of the age of Earth or the ...
Life in the Universe (4th Edition)
Write each number in scientific notation.
18. 3,500,000,000
Applied Physics (11th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which terrestrial world has the most a...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The mass of a single hydrogen molecule is approximately 3.32 1027 kg. There are 5.64 1023 hydrogen molecules in a box with square walls of area 49.0 cm2. If the rms speed of the molecules is 2.72 103 m/s, calculate the pressure exerted by the gas.arrow_forwardCylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forwardIn the text, it was shown that N/V=2.681025m3 for gas at STP. (a) Show that this quantity is equivalent to N/V=2.681019cm3, as stated. (b) About how many atoms are mere in one m3 (a cubic micrometer) at STP? (c) What does your answer to part (b) imply about the separation of Mama and molecules?arrow_forward
- The R.M.S. speed of the molecules of a gas at N.T.P. is 420 m/s. If the mass of each molecule is 6.8 x 10 26 kg, calculate the number of molecules per cubic meter of the gas (atmospheric pressure P = 105 N/m²).arrow_forwardThe mean free path for helium at a certain temperature and pressure is 2.10 × 10−7 m. The radius of a helium atom can be taken as 1.10 × 10−11 m . What is the measure of the density of helium under those conditions (a) in molecules per cubic meter and (b) in moles per cubic meter?arrow_forwardThe viscosity (η) of a gas depends on its mass, effective diameter, and average molecular velocity of the gas. Estimate the effective diameter of the methane molecule (CH4) if the η value for helium is ηHe = 2.0 × 10−5 kg / ms and methane is ηCH4 = 1.1 × 10−5 kg / ms at room temperature, and the effective diameter helium is dHe = 2.1 × 10−10 m! A. 2 x 10-8 m B. 4 x 10-10 m C. 2 x 10-10 m D. 4 x 10-8 marrow_forward
- If gas pressure (absolute value) for an ideal gas is held constant, the relationship between gas temperature and volume is direct inverse of the form y = mx + c O parabolicarrow_forwardA)An ideal gas is confined to a container at a temperature of 330 K.What is the average kinetic energy of an atom of the gas? (Express your answer to two significant figures.) B)2.00 mol of the helium is confined to a 2.00-L container at a pressure of 11.0 atm. The atomic mass of helium is 4.00 u, and the conversion between u and kg is 1 u = 1.661 ××10−27 kg.Calculate vrmsvrms. (Express your answer to three significant figures.) C)A gold (coefficient of linear expansion α=14×10−6K−1α=14×10−6K−1 ) pin is exactly 4.00 cm long when its temperature is 180∘∘C. Find the decrease in long of the pin when it cools to 28.0∘∘C? (Express your answer to two significant figures.)arrow_forwardThe gas law for an ideal gas at absolute temperature T (in kelvins), pressure P (in atmospheres), and volume V (in liters) is PV = nRT, where n is the number of moles of the gas and R = 0.0821 is the gas constant. Suppose that, at a certain instant, P = 7.0 atm and is increasing at a rate of 0.15 atm/min and V = 13 and is decreasing at a rate of 0.17 L/min. Find the rate of change of T with respect to time (in K/min) at that instant if n = 10 mol.(Round your answer to four decimal places.)arrow_forward
- A frictionless piston of mass m = 3.0 kg is a precise fit in the narrow vertical cylindrical neck of a large container of volume V = 1000 litres and can move frictionless. The container is filled with an ideal gas and there is a vacuum above the piston. The cross-sectional area of the neck is A = 1.00 x 10-4 m2. a) Assuming that the pressure and volume of the gas change slowly and isothermally, determine the differential equation of motion for small displacements of the piston about its equilibrium position and hence calculate the angular frequency of oscillation. [Hint: find an equilibrium pressure and consider how small displacement of the piston from the equilibrium position changes the volume and pressure in the vessel]. b) Without calculation, consider whether the frequency will increase or decrease if the pressure and volume of the gas were to change adiabatically. Explain your reasoning.arrow_forwardThe gas law for an ideal gas at absolute temperature T (in kelvins), pressure P (in atmospheres), and volume V (in liters) is PV = nRT, where n is the number of moles of the gas and R = 0.0821 is the gas constant. Suppose that, at a certain instant, P = 9.0 atm and is increasing at a rate of 0.15 atm/min and V = 13 L and is decreasing at a rate of 0.17 L/min. Find the rate of change of T with respect to time at that instant if n = 10 mol. (Round your answer to four decimal places.) K/min dT_ dtarrow_forward(a) What is the total translational kinetic energy of the air in an empty room that has dimensions 8.00 m * 12.00 m * 4.00 m if the air is treated as an ideal gas at 1.00 atm? (b) What is the speed of a 2000 kg automobile if its kinetic energy equals the translational kinetic energy calculated in part (a)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY