UNIVERSITY PHYSICS UCI PKG
11th Edition
ISBN: 9781323575208
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 18.35E
At what temperature is the root-mean-square speed of nitrogen molecules equal to the root-mean-square speed of hydrogen molecules at 20.0°C? (Hint: Appendix D shows the molar mass (in g/mol) of each element under the chemical symbol for that element. The molar mass of H2 is twice the molar mass of hydrogen atoms, and similarly for N2.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two moles of a krypton gas are at a temperature of 420 K. Calculate the average kinetic energy per atom, the root-mean-square (rms) speed of atoms in the gas, and the internal energy of the gas.
HINT
(a)
the average kinetic energy per atom (in J)
J
(b)
the root-mean-square (rms) speed (in m/s) of atoms in the gas
m/s
(c)
the internal energy of the gas (in J)
J
Two moles of a helium gas are at a temperature of 260 K. Calculate the average kinetic energy per atom, the root-mean-square (rms) speed of atoms in the gas, and the internal energy of the gas.
HINT
(a)
the average kinetic energy per atom (in J)
J
(b)
the root-mean-square (rms) speed (in m/s) of atoms in the gas
m/s
(c)
the internal energy of the gas (in J)
J
Helium atoms have a mass of 4u and oxygen molecules have a mass of 32u, where u is defined as an atomic mass unit (u=1.660540×10−27 kg). Compare a gas of helium atoms to a gas of oxygen molecules.
Part A: At what gas temperature TE would the average translational kinetic energy of a helium atom be equal to that of an oxygen molecule in a gas of temperature 300 K?
Part B: At what gas temperature Trms would the root-mean-square (rms) speed of a helium atom be equal to that of an oxygen molecule in a gas at 300 K?
Chapter 18 Solutions
UNIVERSITY PHYSICS UCI PKG
Ch. 18.1 - Rank the following ideal gases in order from...Ch. 18.2 - Prob. 18.2TYUCh. 18.3 - Rank the following gases in order from (a) highest...Ch. 18.4 - A cylinder with a fixed volume contains hydrogen...Ch. 18.5 - A quantity of gas containing N molecules has a...Ch. 18.6 - The average atmospheric pressure on Mars is 6.0 ...Ch. 18 - Section 18.1 states that ordinarily, pressure,...Ch. 18 - In the ideal-gas equation, could an equivalent...Ch. 18 - When a car is driven some distance, the air...Ch. 18 - The coolant in an automobile radiator is kept at a...
Ch. 18 - Unwrapped food placed in a freezer experiences...Ch. 18 - A group of students drove from their university...Ch. 18 - The derivation of the ideal-gas equation included...Ch. 18 - A rigid, perfectly insulated container has a...Ch. 18 - (a) Which has more atoms: a kilogram of hydrogen...Ch. 18 - Use the concepts of the kinetic-molecular model to...Ch. 18 - The proportions of various gases in the earths...Ch. 18 - Comment on the following statement: When two gases...Ch. 18 - Prob. 18.13DQCh. 18 - The temperature of an ideal gas is directly...Ch. 18 - If the pressure of an ideal monatomic gas is...Ch. 18 - In deriving the ideal-gas equation from the...Ch. 18 - Imagine a special air filter placed in a window of...Ch. 18 - Prob. 18.18DQCh. 18 - Consider two specimens of ideal gas at the same...Ch. 18 - The temperature of an ideal monatomic gas is...Ch. 18 - Prob. 18.21DQCh. 18 - (a) If you apply the same amount of heat to 1.00...Ch. 18 - Prob. 18.23DQCh. 18 - In a gas that contains N molecules, is it accurate...Ch. 18 - The atmosphere of the planet Mars is 95.3% carbon...Ch. 18 - Prob. 18.26DQCh. 18 - Ice is slippery to walk on, and especially...Ch. 18 - Hydrothermal vents are openings in the ocean floor...Ch. 18 - The dark areas on the moons surface are called...Ch. 18 - In addition to the normal cooking directions...Ch. 18 - A 20.0-L tank contains 4.86 104 kg of helium at...Ch. 18 - Helium gas with a volume of 3.20 L, under a...Ch. 18 - A cylindrical tank has a tight-fitting piston that...Ch. 18 - A 3.00-L lank contains air at 3.00 atm and 20.0C....Ch. 18 - Planetary Atmospheres. (a) Calculate the density...Ch. 18 - You have several identical balloons. You...Ch. 18 - A Jaguar XK8 convertible has an eight-cylinder...Ch. 18 - A welder using a tank of volume 0.0750 m3 fills it...Ch. 18 - A large cylindrical tank contains 0.750 m3 of...Ch. 18 - An empty cylindrical canister 1.50 m long and 90.0...Ch. 18 - The gas inside a balloon will always have a...Ch. 18 - An ideal gas has a density of 1.33 106 g/cm3 at...Ch. 18 - If a certain amount of ideal gas occupies a volume...Ch. 18 - A diver observes a bubble of air rising from the...Ch. 18 - A metal tank with volume 3.10 L will burst if the...Ch. 18 - Three moles of an ideal gas are in a rigid cubical...Ch. 18 - With the assumptions of Example 18.4 (Section...Ch. 18 - With the assumption that the air temperature is a...Ch. 18 - (a) Calculate the mass of nitrogen present in a...Ch. 18 - At an altitude of 11,000 m (a typical cruising...Ch. 18 - Prob. 18.21ECh. 18 - Prob. 18.22ECh. 18 - Modern vacuum pumps make it easy to attain...Ch. 18 - The Lagoon Nebula (Fig. E18.24) is a cloud of...Ch. 18 - In a gas at standard conditions, what is the...Ch. 18 - How Close Together Are Gas Molecules? Consider an...Ch. 18 - (a) What is the total translational kinetic energy...Ch. 18 - A flask contains a mixture of neon (Ne), krypton...Ch. 18 - We have two equal-size boxes, A and B. Each box...Ch. 18 - A container with volume 1.64 L is initially...Ch. 18 - Prob. 18.31ECh. 18 - Martian Climate. The atmosphere of Mars is mostly...Ch. 18 - Prob. 18.33ECh. 18 - Calculate the mean free path of air molecules at...Ch. 18 - At what temperature is the root-mean-square speed...Ch. 18 - Prob. 18.36ECh. 18 - Prob. 18.37ECh. 18 - Perfectly rigid containers each hold n moles of...Ch. 18 - (a) Compute the specific heat at constant volume...Ch. 18 - Prob. 18.40ECh. 18 - Prob. 18.41ECh. 18 - For a gas of nitrogen molecules (N2), what must...Ch. 18 - Prob. 18.43ECh. 18 - Meteorology. The vapor pressure is the pressure of...Ch. 18 - Calculate the volume of 1.00 mol of liquid water...Ch. 18 - A physics lecture room at 1.00 atm and 27.0C has a...Ch. 18 - CP BIO The Effect of Altitude on the Lungs. (a)...Ch. 18 - CP BIO The Bends. If deep-sea divers rise to the...Ch. 18 - CP A hot-air balloon stays aloft because hot air...Ch. 18 - In an evacuated enclosure, a vertical cylindrical...Ch. 18 - A cylinder 1.00 m tall with inside diameter 0.120...Ch. 18 - CP During a test dive in 1939, prior to being...Ch. 18 - Atmosphere or Titan. Titan, the largest satellite...Ch. 18 - Pressure on Venus. At the surface of Venus the...Ch. 18 - An automobile tire has a volume of 0.0150 m3 on a...Ch. 18 - A flask with a volume of 1.50 L, provided with a...Ch. 18 - CP A balloon of volume 750 m3 is to be filled with...Ch. 18 - A vertical cylindrical tank contains 1.80 mol of...Ch. 18 - CP A large tank of water has a hose connected to...Ch. 18 - CP A light, plastic sphere with mass m = 9.00 g...Ch. 18 - Prob. 18.61PCh. 18 - BIO A person at rest inhales 0.50 L of air with...Ch. 18 - You have two identical containers, one containing...Ch. 18 - The size of an oxygen molecule is about 2.0 1010...Ch. 18 - A sealed box contains a monatomic ideal gas. The...Ch. 18 - Helium gas is in a cylinder that has rigid walls....Ch. 18 - You blow up a spherical balloon to a diameter of...Ch. 18 - CP (a) Compute the increase in gravitational...Ch. 18 - Prob. 18.69PCh. 18 - Prob. 18.70PCh. 18 - It is possible to make crystalline solids that are...Ch. 18 - Hydrogen on the Sun. The surface of the sun has a...Ch. 18 - Prob. 18.73PCh. 18 - Planetary Atmospheres. (a) The temperature near...Ch. 18 - Prob. 18.75PCh. 18 - Prob. 18.76PCh. 18 - CALC (a) Explain why in a gas of N molecules, the...Ch. 18 - Prob. 18.78PCh. 18 - CP Oscillations of a Piston. A vertical cylinder...Ch. 18 - Prob. 18.80PCh. 18 - DATA The Dew Point and Clouds. The vapor pressure...Ch. 18 - DATA The statistical quantities average value and...Ch. 18 - CP Dark Nebulae and the Interstellar Medium. The...Ch. 18 - CALC Earths Atmosphere. In t he troposphere, the...Ch. 18 - Prob. 18.85PPCh. 18 - Estimate the ratio of the thermal conductivity of...Ch. 18 - The rate of effusionthat is, leakage of a gas...
Additional Science Textbook Solutions
Find more solutions based on key concepts
S
10. FIGURE EX6.10 shows the velocity graph of a 2.0 kg object as it moves along the x-axis. What is the net ...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
A contact lens prescription calls for +2.25-diopter lenses with inner curvature radius 8.6 mm to fit the patien...
Essential University Physics: Volume 2 (3rd Edition)
The visible light that shines on a pane of transparent glass a. Produces a chain of absorption and reemissions ...
Conceptual Integrated Science
* Gabriele enters an east-west straight bike path at the 3.0-km mark and rides west at a constant speed of 8.0 ...
College Physics
35.14 Coherent light that contains two wavelengths. 660 nm (red) and 470 nm (blue), passes through two narrow s...
University Physics (14th Edition)
(II) When using a mercury barometer (Section 13–6), the vapor pressure of mercury is usually assumed to be zero...
Physics for Scientists and Engineers with Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Cylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forwardOn a hot summer day, the density of air at atmospheric pressure at 35.0C is 1.1455 kg/m3. a. What is the number of moles contained in 1.00 m3 of an ideal gas at this temperature and pressure? b. Avogadros number of air molecules has a mass of 2.85 102 kg. What is the mass of 1.00 m3 of air? c. Does the value calculated in part (b) agree with the stated density of air at this temperature?arrow_forwardAn ideal gas is contained in a vessel at 300 K. The temperature of the gas is then increased to 900 K. (i) By what factor does the average kinetic energy of the molecules change, (a) a factor of 9, (b) a factor of 3, (c) a factor of 3, (d) a factor of 1, or (e) a factor of 13? Using the same choices as in part (i), by what factor does each of the following change: (ii) the rms molecular speed of the molecules, (iii) the average momentum change that one molecule undergoes in a collision with one particular wall, (iv) the rate of collisions of molecules with walls, and (v) the pressure of the gas?arrow_forward
- A sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forwardA gas is at 200 K. If we wish to double the rms speed of the molecules of the gas, to what value must we raise its temperature? (a) 283 K (b) 400 K (c) 566 K (d) 800 K (e) 1 130 Karrow_forwardHow many moles are there in (a) 0.0500 g of N2 gas (M = 28.0 g/mol)? (b) 10.0 g of CO2 gas (M = 44.0 g/mol)? (c) How many molecules are present in each case?arrow_forward
- A 0.500-m3 container holding 3.00 mol of ozone (O3) is kept at a temperature of 250 K. Assume the molecules have radius r = 2.50 1010 m. What are the a. mean free path and b. mean free time between collisions for an ozone molecule in the container?arrow_forwardA cylinder with a piston holds 0.50 m3 of oxygen at an absolute pressure of 4.0 atm. The piston is pulled outward, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature stays constant, what new volume does the gas occupy? (a) 1.0 m3 (b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3arrow_forwardThe mass of a single hydrogen molecule is approximately 3.32 1027 kg. There are 5.64 1023 hydrogen molecules in a box with square walls of area 49.0 cm2. If the rms speed of the molecules is 2.72 103 m/s, calculate the pressure exerted by the gas.arrow_forward
- Two containers hold an ideal gas at the same temperature and pressure. Both containers hold the same type of gas, but container B has twice the volume of container A. (i) What is the average translational kinetic energy per molecule in container B? (a) twice that of container A (b) the same as that of container A (c) half that of container A (d) impossible to determine (ii) From the same choices, describe the internal energy of the gas in container B.arrow_forwardOne cylinder contains helium gas and another contains krypton gas at the same temperature. Mark each of these statements true, false, or impossible to determine from the given information. (a) The rms speeds of atoms in the two gases are the same. (b) The average kinetic energies of atoms in the two gases are the same. (c) The internal energies of 1 mole of gas in each cylinder are the same. (d) The pressures in the two cylinders ale the same.arrow_forwardAt what temperature is the average speed of carbon dioxide molecules ( M=44.0 g/mol) 510 m/s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY