Concept explainers
(a)
Interpretation:
The increasing order of acidity with the reason for the given compounds is to be stated.
Concept introduction:
Brønsted bases are those species which accept a proton. Base accepts a proton and forms conjugate acid. Brønsted acids are those species which donate a proton. Acid loses a proton and forms conjugate base. The acidity of the compound depends upon the stability of its conjugate base. The more stable the conjugate base, the more acidic the given compound. It also depends on the charge, inductive effects, the role of atom present.

Answer to Problem 18.49AP
The acidity of the given compounds in increasing order is shown below.
This is because of the conjugate base stability and resonance stabilization of benzene thiol.
Explanation of Solution
The acidity of the compound depends upon the stability of its conjugate base. The greater the stability of the conjugate base more acidic the given compound. The structure of the conjugate base of the given compounds is shown below.
Figure 1
The conjugate base of benzene thiol is stabilized by the resonance that is why its acidity is greater among the given compounds. The cyclohexyl mercaptan contains sulfur atom which is larger than the oxygen atom, due to this it is more capable of diffusing negative charge. Therefore, the cyclohexyl mercaptan conjugate base is more stable than the cyclohexanol. This results in greater acidity of the cyclohexyl mercaptan compound.
The increasing order of acidity of the given compound is shown below.
The increasing order of acidity is
(b)
Interpretation:
The increasing order of acidity with the reason for the given compounds is to be stated.
Concept introduction:
Brønsted bases are those species which accept a proton. Base accepts a proton and forms conjugate acid. Brønsted acids are those species which donate a proton. Acid loses a proton and forms conjugate base. The acidity of the compound depends upon the stability of its conjugate base. The more stable the conjugate base, the more acidic the given compound. It also depends on the charge, inductive effects, the role of the atom present, resonance, orbitals.

Answer to Problem 18.49AP
The acidity of the given compounds in increasing order is shown below.
This is because of the conjugate base stability and resonance stabilization of phenol and
Explanation of Solution
The acidity of the compound depends upon the stability of its conjugate base. The greater the stability of the conjugate base more acidic the given compound. The structure of the conjugate base of the given compounds is shown below.
Figure 2
The conjugate base of phenoxide ion is stabilized by the resonance that is why its acidity is greater among the given compounds. The conjugate base of benzyl alcohol exerts
The increasing order of acidity is
(c)
Interpretation:
The increasing order of acidity with the reason for the given compounds is to be stated.
Concept introduction:
Brønsted bases are those species which accept a proton. Base accepts a proton and forms conjugate acid. Brønsted acids are those species which donate a proton. Acid loses a proton and forms conjugate base. The acidity of the compound depends upon the stability of its conjugate base. The more stable the conjugate base, the more acidic the given compound. It also depends on the charge, inductive effects, electronegativity, resonance, orbitals.

Answer to Problem 18.49AP
The acidity of the given compounds in increasing order is shown below.
This is because of the conjugate base stability and equivalent resonance stabilization of nitric acid.
Explanation of Solution
The acidity of the compound depends upon the stability of its conjugate base. The greater the stability of the conjugate base more acidic the given compound. The structure of the conjugate base of the given compounds is shown below.
Figure 3
The equivalent resonance structures are more stable as compared to nonequivalent resonance structures. The nitric acid conjugate base shows equivalent resonance structures. Also, it is stabilized by the negative charge on the two oxygen atoms. It also exerts
The increasing order of acidity is
(d)
Interpretation:
The increasing order of acidity with the reason for the given compounds is to be stated.
Concept introduction:
Brønsted bases are those species which accept a proton. Base accepts a proton and forms conjugate acid. Brønsted acids are those species which donate a proton. Acid loses a proton and forms conjugate base. The acidity of the compound depends upon the stability of its conjugate base. The more stable the conjugate base, the more acidic the given compound. It also depends on the charge, inductive effects, electronegativity, resonance, orbitals.

Answer to Problem 18.49AP
The acidity of the given compounds in increasing order is shown below.
This is because of the conjugate base stability and resonance stabilization of
Explanation of Solution
The acidity of the compound depends upon the stability of its conjugate base. The greater the stability of the conjugate base more acidic the given compound. The structure of the conjugate base of the given compounds is shown below.
Figure 4
The conjugate base of
The increasing order of acidity is
(e)
Interpretation:
The increasing order of acidity with the reason for the given compounds is to be stated.
Concept introduction:
Brønsted bases are those species which accept a proton. Base accepts a proton and forms conjugate acid. Brønsted acids are those species which donate a proton. Acid loses a proton and forms conjugate base. The acidity of the compound depends upon the stability of its conjugate base. The more stable the conjugate base, the more acidic the given compound. It also depends on the charge, inductive effects, electronegativity, resonance, orbitals.

Answer to Problem 18.49AP
The acidity of the given compounds in increasing order is shown below.
This is because of the conjugate base stability,
Explanation of Solution
The acidity of the compound depends upon the stability of its conjugate base. The greater the stability of the conjugate base more acidic the given compound. The structure of the conjugate base of the given compounds is shown below.
Figure 5
The conjugate base of the compound B stabilized by
The increasing order of acidity is
Want to see more full solutions like this?
Chapter 18 Solutions
EBK ORGANIC CHEMISTRY STUDY GUIDE AND S
- Which of the following starting materials and reagents would be best to produce a racemic mixture of 3-methyl-3-hexanol? heptanone and 1. CH3MgBr 2. H3O+ hexanal and 1. CH3MgBr, 2. H3O+ 3-hexanone and 1. CH3MgBr, 2. H3O+ butanal and 1. CH3CH2MgBr, 2. H3O+arrow_forwardCan someone draw a reaction mechanism of this reaction please I was told that the boc l alanine is deprotonated first and acts as the nucleophile attacking the EDCL and can you please show all the intermediates and side products and the water at the endarrow_forwardX- 22.5 d 33.0 d P17E.3 Two radioactive nuclides decay by successive first-order processes: → Y → Z (the quantities over the arrows are the half-lives in days). Suppose that Y is an isotope that is required for medical applications. At what time after X is first formed will Y be most abundant?arrow_forward
- Use solubility rules to complete balance molecular equations, and provide total and net ionic equations. Silver Nitrate and Iron(III) Nitrate Copper(II) Sulfate and Ammonium Chloride Copper(II) Sulfate and Magnesium Chloride NH₄Cl(aq) + MgCl₂(aq) → NH₄Cl(aq) + Fe(NO₃)₃(aq) → NH₄Cl(aq) + BaCl₂(aq) →arrow_forward8.arrow_forward7arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning


