Concept explainers
For each N-substituted benzene, predict whether the compound reacts faster than, slower than, or at a similar rate to benzene in electrophilic
a. b. c. d.
(a)
Interpretation: The given compound reacts faster than, slower than, or at equal rate to benzene in electrophilic aromatic substitution is to be predicted and the major product(s) formed by the reaction between given compound and general electrophile
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron deficient chemical species that contains positive charge are known as electrophile. In electrophilic aromatic substitution reaction, electrophile takes the position of hydrogen atom by attacking the electron rich carbon atom of benzene.
Answer to Problem 18.48P
The given compound reacts faster in electrophilic substitution reaction than benzene ring. The major product formed by the reaction between given compound and general electrophile
Explanation of Solution
The electron donating groups or activating groups make benzene ring more electron rich, as a result the compound reacts faster in electrophilic substitution reaction than benzene ring. On the other hand, the electron withdrawing groups or deactivating groups make benzene ring less electron rich; as a result the compound reacts slower in electrophilic substitution reaction than benzene ring.
In the given compound, benzene ring is attached to
The activating groups are ortho, para directing whereas the deactivating groups are meta directing. The major product formed by the reaction between given compound and general electrophile
Figure 1
The given compound reacts faster in electrophilic substitution reaction than benzene ring. The major product formed by the reaction between given compound and general electrophile
(b)
Interpretation: The given compound reacts faster than, slower than, or at equal rate to benzene in electrophilic aromatic substitution is to be predicted and the major product(s) formed by the reaction between given compound and general electrophile
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron deficient chemical species that contains positive charge are known as electrophile. In electrophilic aromatic substitution reaction, electrophile takes the position of hydrogen atom by attacking the electron rich carbon atom of benzene.
Answer to Problem 18.48P
The given compound reacts slower in electrophilic substitution reaction than benzene ring. The major product formed by the reaction between given compound and general electrophile
Explanation of Solution
The electron donating groups or activating groups make benzene ring more electron rich, as a result the compound reacts faster in electrophilic substitution reaction than benzene ring. On the other hand, the electron withdrawing groups or deactivating groups make benzene ring less electron rich; as a result the compound reacts slower in electrophilic substitution reaction than benzene ring.
In the given compound, benzene ring is attached to
The activating groups are ortho, para directing whereas the deactivating groups are meta directing. The major product formed by the reaction between given compound and general electrophile
Figure 2
The given compound reacts slower in electrophilic substitution reaction than benzene ring. The major product formed by the reaction between given compound and general electrophile
(c)
Interpretation: The given compound reacts faster than, slower than, or at equal rate to benzene in electrophilic aromatic substitution is to be predicted and the major product(s) formed by the reaction between given compound and general electrophile
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron deficient chemical species that contains positive charge are known as electrophile. In electrophilic aromatic substitution reaction, electrophile takes the position of hydrogen atom by attacking the electron rich carbon atom of benzene.
Answer to Problem 18.48P
The given compound reacts slower in electrophilic substitution reaction than benzene ring. The major product formed by the reaction between given compound and general electrophile
Explanation of Solution
The electron donating groups or activating groups make benzene ring more electron rich, as a result the compound reacts faster in electrophilic substitution reaction than benzene ring. On the other hand, the electron withdrawing groups or deactivating groups make benzene ring less electron rich; as a result the compound reacts slower in electrophilic substitution reaction than benzene ring.
In the given compound, benzene ring is attached to
The activating groups are ortho, para directing whereas the deactivating groups are meta directing. The major product formed by the reaction between given compound and general electrophile
Figure 3
The given compound reacts slower in electrophilic substitution reaction than benzene ring. The major product formed by the reaction between given compound and general electrophile
(d)
Interpretation: The given compound reacts faster than, slower than, or at equal rate to benzene in electrophilic aromatic substitution is to be predicted and the major product(s) formed by the reaction between given compound and general electrophile
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron deficient chemical species that contains positive charge are known as electrophile. In electrophilic aromatic substitution reaction, electrophile takes the position of hydrogen atom by attacking the electron rich carbon atom of benzene.
Answer to Problem 18.48P
The given compound reacts at a similar rate to benzene in electrophilic substitution reaction. The major product formed by the reaction between given compound and general electrophile
Explanation of Solution
The electron donating groups or activating groups make benzene ring more electron rich, as a result the compound reacts faster in electrophilic substitution reaction than benzene ring. On the other hand, the electron withdrawing groups or deactivating groups make benzene ring less electron rich; as a result the compound reacts slower in electrophilic substitution reaction than benzene ring.
In the given compound, benzene ring is attached to
The activating groups are ortho, para directing whereas the deactivating groups are meta directing. The major product formed by the reaction between given compound and general electrophile
Figure 4
The given compound reacts at a similar rate to benzene in electrophilic substitution reaction. The major product formed by the reaction between given compound and general electrophile
Want to see more full solutions like this?
Chapter 18 Solutions
Organic Chemistry
- Definition and classification of boranes.arrow_forwardWhich of the terms explain the relationship between the two compounds? CH2OH Он Он Он Он α-D-galactose anomers enantiomers diastereomers epimers CH2OH ОН O он Он ОН B-D-galactosearrow_forwardHi, I need help on my practice final, If you could offer strategies and dumb it down for me with an explanation on how to solve that would be amazing and beneficial.arrow_forward
- Hi I need help with my practice final, it would be really helpful to offer strategies on how to solve it, dumb it down, and a detailed explanation on how to approach future similar problems like this. The devil is in the details and this would be extremely helpfularrow_forwardIn alpha-NbI4, Nb4+ should have the d1 configuration (bond with paired electrons: paramagnetic). Please comment.arrow_forwardHi, I need help on my practice final, if you could explain how to solve it offer strategies and dumb it down that would be amazing. Detail helpsarrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning