Using values of ΔfH° and S°, calculate the standard molar free energy of formation, ΔfG°, for each of the following compounds:
- (a) CS2(g)
- (b) NaOH(s)
- (c) ICl(g)
Compare your calculated values of ΔfG° with those listed in Appendix L Which of these formation reactions are predicted to be product-favored at equilibrium at 25 °C?
(a)
Interpretation:
The the standard molar free energy for formation of
Concept Introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
Here,
Answer to Problem 17PS
The standard molar free energy of formation for
The value of
Explanation of Solution
The standard molar free energy of formation for
Given:
The Appendix L referred for the values of standard entropies and enthalpies.
Substituting the respective values,
Substituting the respective values,
Now,
Substituting the value of
The value listed in Appendix L is
The value of
(b)
Interpretation:
The the standard molar free energy for formation of
Concept Introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
Here,
Answer to Problem 17PS
The standard molar free energy of formation for
The value of
Explanation of Solution
The standard molar free energy of formation for
Given:
The Appendix L referred for the values of standard entropies and enthalpies.
Substituting the values,
Substituting the values,
Now,
Substitute the value of
The value listed in Appendix L is
The value of
(c)
Interpretation:
The the standard molar free energy for formation of
Concept Introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
Here,
Answer to Problem 17PS
The standard molar free energy of formation for
The value of
Explanation of Solution
The standard molar free energy of formation for
Given:
The Appendix L referred for the values of standard entropies and enthalpies.
Substituting the respective values,
Substituting the respective values,
Now,
Substituting the value of
The value listed in Appendix L is
The value of
Want to see more full solutions like this?
Chapter 18 Solutions
CHEMISTRY+CHEM...HYBRID ED.(LL)>CUSTOM<
- Q5. Predict the organic product(s) for the following transformations. If no reaction will take place (or the reaction is not synthetically useful), write "N.R.". Determine what type of transition state is present for each reaction (think Hammond Postulate). I Br₂ CH3 F2, light CH3 Heat CH3 F₂ Heat Br2, light 12, light CH3 Cl2, lightarrow_forwarda. For the following indicated bonds, rank them in order of decreasing AH° for homolytic cleavage. Based on your answer, which bond would be most likely to break homolytically? (a) (c) H3C CH3 .CH3 CH3 CH3 (b) Page 1 of 5 Chem 0310 Organic Chemistry 1 Recitations b. Draw all the possible radical products for 2-methylbutane, and determine which bond is most likely to be broken.arrow_forwardA 5-m³ rigid tank contains 5 kg of water at 100°C. Determine (a) the pressure, (b) the total enthalpy, and (c) the mass of each phase of water.arrow_forward
- Q8. Draw the mechanism for this halogenation reaction. Show all steps including initiation, propagation, and recombination. Cl₂, hv CI Br Br2, hv, heatarrow_forwardQ6. Given the following alkanes, draw the most likely product to form upon monohalogenation with Br2 (keep in mind that this may not be the only product to form though). If the reaction was performed with Cl2 would there be more or less selectivity in the desired product formation? Why? (a) (b) (c)arrow_forwardQ4. Radicals a. For the following indicated bonds, rank them in order of decreasing AH° for homolytic cleavage. Based on your answer, which bond would be most likely to break homolytically? (c) CH3 CH3 H3C CH3 (a) CH3 (b)arrow_forward
- Q1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forwardohing Quantitative Relationships 425 The specific heats and atomic masses of 20 of the elements are given in the table below. Use a graphical method to determine if there is a relationship between specific heat and the atomic mass. a. b. C. d. e. If your graphs revealed relationship between specific heat and atomic revealed a mathematical mass, write down an equation for the relationship. Comment on the usefulness of the determination of specific heat as a method for identifying an element. Would specific heat alone give you much confidence with regard to the identity of the element? If you think measurement of another property would be needed to support an identification, what property would you measure and why? The elements listed in the table are all selected metals. The values for nitrogen, oxygen, fluorine and neon are 1.040, 0.918, 0.824 and 1.030 J/g K respectively. Do these elements fit your equation? element atomic mass specific heat (almol) (Jig K) magnesium 24.305 1.023…arrow_forwardPlease correct answer and don't use hand rating and don't use Ai solutionarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning