(a)
Interpretation:
The process for conversion of Uranium-238 to thorium-234 has to be given.
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary
This nuclear reaction can be represented by
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
Apart from alpha, beta, or gamma radiation, positron emission also takes place. This is a positively charged electron. Positron emission results in the decrease in atomic number of the formed nuclide. There is no change in mass number.
(b)
Interpretation:
The process for conversion of Iodine-131 to xenon-131 has to be given.
Concept Introduction:
Refer part (a).
(c)
Interpretation:
The process for conversion of Nitrogen-13 to carbon-13 has to be given.
Concept Introduction:
Refer part (a).
(d)
Interpretation:
The process for conversion of Bismuth-214 to polonium-214 has to be given.
Concept Introduction:
Refer part (a).
Trending nowThis is a popular solution!
Chapter 18 Solutions
OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
- Write the balanced nuclear equation for the production of the following transuranium elements: (a) berkelium-244, made by the reaction of Am-241 and He-4. (b) fermiurn-254, made by the reaction of Pu-239 with a large number of neutrons. (c) lawrencium-257, made by the reaction of Cf-250 and B-11. (d) dubnium-260, made by the reaction of Cf-249 and N-15arrow_forwardBoth fusion and fission are nuclear reactions. Why is a very high temperature required for fusion, but not for ?ssion?arrow_forwardWrite a balanced equation for each of the following nuclear reactions: (a) the production of 17O from 14N by a particle bombardment. (b) the production of 14C from 14N by neutron bombardment. (c) the production of 233Th from 232Th by neutron bombardment. (d) the production of 239U from 238U by H12 bombardmentarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning