Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337671729
Author: SERWAY
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 12P
To determine
The height at which the span will rise.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A liquid with a coefficient of volume expansion of β just fills a spherical flask of volume V 0 at temperature Ti (Fig. P10.57). The flask is made of a material that has a coefficient of linear expansion of a. The liquid is free to expand into a capillary of cross- sectional area A at the top. (a) Show that if the temperature increases by ΔT, the liquid rises in the capillary by the amount Δh = (V0 /A)(β − 3α)ΔT. (b) For a typical system, such as a mercury thermometer, why is it a good approximation to neglect the expansion of the flask?
Many fish maintain buoyancy with a gas-filled swim bladder. The pressure inside the swim bladder is the same as the outside water pressure, so when a fish descends to a greater depth, the gas compresses. Adding gas to restore the original volume requires energy. A fish at a depth where the absolute pressure is 3.0 atm has a swim bladder with the desired volume of 5.0 × 10-4 m3. The fish now descends to a depth where the absolute pressure is 5.0 atm.a. The gas in the swim bladder is always the same temperatureas the fish’s body. What is the volume of the swim bladder at the greater depth?b. The fish remains at the greater depth, slowly adding gas to the swim bladder to return it to its desired volume. How much work is required?
During inhalation, a person’s diaphragm and intercostal muscles contract, expanding the chest cavity and lowering the internal air pressure below ambient so that air flows in through the mouth and nose to the lungs. Suppose a person’s lungs hold 1250 mL of air at a pressure of 1.00 atm. If the person expands the chest cavity by 525 mL while keeping the nose and mouth closed so that no air is inhaled, what will be the air pressure in the lungs in atm? Assume the air temperature remains constant.
Chapter 18 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 18.1 - Prob. 18.1QQCh. 18.3 - Consider the following pairs of materials. Which...Ch. 18.4 - If you are asked to make a very sensitive glass...Ch. 18.4 - Prob. 18.4QQCh. 18.5 - A common material for cushioning objects in...Ch. 18.5 - On a winter day, you turn on your furnace and the...Ch. 18 - Prob. 1PCh. 18 - Prob. 2PCh. 18 - Prob. 3PCh. 18 - Liquid nitrogen has a boiling point of 195.81C at...
Ch. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - A copper telephone wire has essentially no sag...Ch. 18 - Prob. 8PCh. 18 - The Trans-Alaska pipeline is 1 300 km long,...Ch. 18 - Prob. 10PCh. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Why is the following situation impossible? A thin...Ch. 18 - A volumetric flask made of Pyrex is calibrated at...Ch. 18 - Review. On a day that the temperature is 20.0C, a...Ch. 18 - Prob. 17PCh. 18 - Prob. 18PCh. 18 - An auditorium has dimensions 10.0 m 20.0 m 30.0...Ch. 18 - Prob. 20PCh. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - In state-of-the-art vacuum systems, pressures as...Ch. 18 - Prob. 24PCh. 18 - Prob. 25PCh. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - Prob. 28PCh. 18 - The pressure gauge on a cylinder of gas registers...Ch. 18 - Prob. 30APCh. 18 - Prob. 31APCh. 18 - Why is the following situation impossible? An...Ch. 18 - A student measures the length of a brass rod with...Ch. 18 - Prob. 34APCh. 18 - A liquid has a density . (a) Show that the...Ch. 18 - Prob. 36APCh. 18 - Prob. 37APCh. 18 - A bimetallic strip of length L is made of two...Ch. 18 - Prob. 39APCh. 18 - A vertical cylinder of cross-sectional area A is...Ch. 18 - Prob. 41APCh. 18 - Prob. 42APCh. 18 - Prob. 43APCh. 18 - Prob. 44CPCh. 18 - A 1.00-km steel railroad rail is fastened securely...Ch. 18 - Prob. 46CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P18.40). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find the height h in Figure P18.40. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder. Figure P18.40arrow_forwardA vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P16.56). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find die height h in Figure P16.56. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder.arrow_forwardDuring inhalation, a person's diaphragm and intercostal muscles contract, expanding the chest cavity and lowering the internal air pressure below ambient so that air flows in through the mouth and nose to the lungs. Suppose a person's lungs hold 1240 mL of air at a pressure of 1.00 atm. If they expand their chest cavity by 515 mL while keeping their nose and mouth closed so that no air is inhaled, what will be the air pressure in their lungs in atm? Assume the air temperature remains constant.arrow_forward
- During inhalation, a person's diaphragm and intercostal muscles contract, expanding the chest cavity and lowering the internal air pressure below ambient so that air flows in through the mouth and nose to the lungs. Suppose a person's lungs hold 1260 mL of air at a pressure of 1.00 atm. If they expand their chest cavity by 485 mL while keeping their nose and mouth closed so that no air is inhaled, what will be the air pressure in their lungs in atm? Assume the air temperature remains constant. HINT atmarrow_forwardDuring inhalation, a person's diaphragm and intercostal muscles contract, expanding the chest cavity and lowering the internal air pressure below ambient so that air flows in through the mouth and nose to the lungs. Suppose a person's lungs hold 1220 mL of air at a pressure of 1.00 atm. If they expand their chest cavity by 530 mL while keeping their nose and mouth closed so that no air is inhaled, what will be the air pressure in their lungs in atm? Assume the air temperature remains constant. HINT atm Need Help? Read It Watch Itarrow_forward(a) Determine the work done on a fluid that expands from i to f as indicated in Figure P12.10. (b) How much work is done on the fluid if it is compressed from f to i along the same path?arrow_forward
- During inhalation, a person's diaphragm and intercostal muscles contract, expanding the chest cavity and lowering the internal air pressure below ambient so that air flows in through the mouth and nose to the lungs. Suppose a person's lungs hold 1220 mL of air at a pressure of 1.00 atm. If they expand their chest cavity by 485 mL while keeping their nose and mouth closed so that no air is inhaled, what will be the air pressure in their lungs in atm? Assume the air temperature remains constant. atmarrow_forwardA 40.0-g projectile is launched by the expansion of hot gas in an arrangement shown in Figure P12.4a. The cross-sectional area of the launch tube is 1.0 cm2, and the length that the projectile travels down the tube after starting from rest is 32 cm. As the gas expands, the pressure varies as shown in Figure P12.4b. The values for the initial pressure and volume are Pi = 11 x 105 Pa and Vi = 8.0 cm3 while the final values arePf = 1.0 x 105 Pa and Vf = 40.0 cm3. Friction between the projectile and the launch tube is negligible. (a) If the projectile is launched into a vacuum, what is the speed of the projectile as it leaves the launch tube? (b) If instead the projectile is launched into air at a pressure of 1.0 x 105 Pa, what fraction of the work done by the expanding gas in the tube is spent by the projectile pushing air out of the way as it proceeds down the tube?arrow_forwardFive bicyclists are riding at the following speeds: 5.4 m/s, 5.7 m/s, 5.8 m/s, 6.0 m/s, and 6.5 m/s. (a) What is their average speed? (b) What is their rms speed?arrow_forward
- The plunger of a syringe has an internal diameter of 1.0 cm and the end of the needle has an internal diameter of 0.35 mm. A practitioner lightly squeezes the plunger, but no serum is emitted by the needle into a vein. So the practitioner gradually increases the squeezing force that she exerts on the plunger such that serum begins to be emitted from the needle into the vein. Assuming no surface tension or friction, what is the minimum squeezing force that the practitioner applies to the plunger in order that serum begins to be emitted from the needle into the vein? Take the pressure of blood in the vein to be 20 mmHg above that of atmospheric pressure. 0.70 N 3.3 N 0.21 N 0.24 N 1.4 N 17Narrow_forwardWater at 15°C is to be pumped from a reservoir (zA = 2 m) to another reservoir at a higher elevation (zB = 9 m) through two 25-m-long plastic pipes connected in parallel. The diameters of the two pipes are 3 cm and 5 cm. Water is to be pumped by a 68 percent efficient motor–pump unit that draws 8 kW of electric power during operation. The minor losses and the head loss in the pipes that connect the parallel pipes to the two reservoirs are considered to be negligible. Determine the total flow rate between the reservoirs and the flow rates through each of the parallel pipes.arrow_forwardThe cylindrical chimney of a factory has an external diameter of 1.1 m and is 20 m high. Determine the bending moment at the base of the chimney when winds at 110 km/h are blowing across it. Take the atmospheric conditions to be 20°C and 1 atm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY