Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337671729
Author: SERWAY
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 36AP
(a)
To determine
To show: The coefficient of volume expansion for the ideal gas at constant pressure is given by
(b)
To determine
The value of the
(c)
To determine
To compare: The result with the experimental value for helium in the table 18.1.
(d)
To determine
To compare: The result with the experimental value for air in the table 18.1.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Compute the density in units of of an ideal gas under the following conditions:
a) At and Torr pressure (1 Torr = 1mm Hg) this is called loschmidt number.
b) In a vacuum of Torr at room temperature . This number is useful one for the experimentalist to know by heart. (10^-3 Torr = 1 micron)
The pressure P (in kilopascals), volume V (in liters), and temperature T (in kelvins) of a mole of an ideal gas
are related by the equation PV = 8.317. Find the rate at which the volume is changing when the
temperature is 325 K and increasing at a rate of 0.05 K/s and the pressure is 29 and increasing at a rate of
0.07 kPa/s.
Please show your answers to at least 4 decimal places.
dV
dt
L/s
The pressure, volume, and temperature of a mole of an ideal gas are related by the equation
PV = 8.31T,
where P is measured in kilopascals, V in liters, and T in kelvins. Use differentials to find the approximate change in the pressure (in kPa) if the volume increases from 14 L to 14.3 L and the temperature decreases from 325 K to 320 K. (Note whether the change is positive or negative in your answer. Round your answer to two decimal places.)
Chapter 18 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 18.1 - Prob. 18.1QQCh. 18.3 - Consider the following pairs of materials. Which...Ch. 18.4 - If you are asked to make a very sensitive glass...Ch. 18.4 - Prob. 18.4QQCh. 18.5 - A common material for cushioning objects in...Ch. 18.5 - On a winter day, you turn on your furnace and the...Ch. 18 - Prob. 1PCh. 18 - Prob. 2PCh. 18 - Prob. 3PCh. 18 - Liquid nitrogen has a boiling point of 195.81C at...
Ch. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - A copper telephone wire has essentially no sag...Ch. 18 - Prob. 8PCh. 18 - The Trans-Alaska pipeline is 1 300 km long,...Ch. 18 - Prob. 10PCh. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Why is the following situation impossible? A thin...Ch. 18 - A volumetric flask made of Pyrex is calibrated at...Ch. 18 - Review. On a day that the temperature is 20.0C, a...Ch. 18 - Prob. 17PCh. 18 - Prob. 18PCh. 18 - An auditorium has dimensions 10.0 m 20.0 m 30.0...Ch. 18 - Prob. 20PCh. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - In state-of-the-art vacuum systems, pressures as...Ch. 18 - Prob. 24PCh. 18 - Prob. 25PCh. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - Prob. 28PCh. 18 - The pressure gauge on a cylinder of gas registers...Ch. 18 - Prob. 30APCh. 18 - Prob. 31APCh. 18 - Why is the following situation impossible? An...Ch. 18 - A student measures the length of a brass rod with...Ch. 18 - Prob. 34APCh. 18 - A liquid has a density . (a) Show that the...Ch. 18 - Prob. 36APCh. 18 - Prob. 37APCh. 18 - A bimetallic strip of length L is made of two...Ch. 18 - Prob. 39APCh. 18 - A vertical cylinder of cross-sectional area A is...Ch. 18 - Prob. 41APCh. 18 - Prob. 42APCh. 18 - Prob. 43APCh. 18 - Prob. 44CPCh. 18 - A 1.00-km steel railroad rail is fastened securely...Ch. 18 - Prob. 46CP
Knowledge Booster
Similar questions
- One process for decaffeinating coffee uses carbon dioxide ( M=44.0 g/mol) at a molar density of about 14,0 mol/m3 and a temperature of about 60 . (a) Is CO2 a solid, liquid, gas, or supercritical fluid under those conditions? (b) The van der Waals constants for carbon dioxide are a=0.3658 Pa m6/mol2 and b=4.286105 m3/mol. Using the van der Waals equation, estimate pressure of CO2 at that temperature and density. `arrow_forwardUsing a numerical integration method such as Simpson's rule, find the fraction of molecules in a sample of oxygen gas at a temperature of 250 K that have speeds between 100 m/s and 150 m/s. The molar mass of oxygen (O2) is 32.0 g/mol. A precision to two significant digits is enough.arrow_forwardAssuming the human body is primarily made of water, estimate the number of molecules in it. (Note that water has a molecular mass of 18 g/mol and there are roughly 1024 atoms in a mole)arrow_forward
- If the volumetric expansion coefficient of an ideal gas is (1/T) and the compression coefficient (1/p), prove the equation of state for an ideal gas pv = nRT if (v, T) v = varrow_forwarda student experiment, a constant-volume gas thermometer is calibrated in dry ice (-78.5 degrees C) and in boiling ethyl alcohol (78 degrees C). The separate pressures are 0.896 atm and 1.629 atm. Hint: Use the linear relationship P = A + BT, where A and B are constants. (a) What value of absolute zero does the calibration yield? (b) What pressure would be found at the freezing point of water? (c) What pressure would be found at the boiling point of water?arrow_forwardAn atom of neon has a radius Ne-38. pm and an average speed in the gas phase at 25°C of 350.m/s. Suppose the speed of a neon atom at 25°C has been measured to within 0.10%. Calculate the smallest possible length of box inside of which the atom could be known to be located with certainty. Write your answer as a multiple of "Ne and round it to 2 significant figures. For example, if the smallest box the atom could be in turns out to be 42.0 times the radius of an atom of neon, you would enter "42.Ne" as your answer. [arrow_forward
- Either give an exact answer, or make sure you include at least 4 significant digits on your answer. The pressure P (in kilopascals), volume V (in liters), and temperature T (in kelvins) of a mole of an ideal gas are related by the equation PV = 8.31T. Find the rate at which the volume is changing when the temperature is 330 K and increasing at a rate of 0.15 K/s and the pressure is 26 and increasing at a rate of 0.03 kPa/s. 1110 L/Sarrow_forwardThe pressure P (in kilopascals), volume V (in liters), and temperature T (in kelvins) of a mole of an ideal gas are related by the equation PV = 8.31T. Find the rate at which the volume is changing when the temperature is 270 K and increasing at a rate of 0.2 K/s and the pressure is 28 and increasing at a rate of 0.08 kPa/s. L/sarrow_forwardthe pressure P of gas varies directly as the absolute temperature T and inversely as the volume V. Translate this joint variation into an equation using k as the constant of variation.arrow_forward
- (a) Estimate the specific heat capacity of sodium from the Law of Dulong and Petit. The molar mass of sodium is 23.0 g/mol. (b) What is the percent error of your estimate from the known value, 1230 J/kg · °C ?arrow_forwardWhich of the statements are true?arrow_forwardThe Table shown gives experimental values of the pressure P of a given mass of gas corresponding to various values of the volume V. According to themodynamic principles, a relationship having the form PVk = C, wherek and C are constants, should exist betwoen the variables. Use the natural log (in) and linear regression to solve the following. 1) Find the value of k a) 0 64 b) 0.82 c) 0.78 d) 0.90 2) Find the value of C. a) 1125 b) 765 c) 995 d) 875 3) Estimate P when V = 100.0 in %3D a) 17.1 b) 31.5 c) 26.9 d) 39.9 TABLE V(in3) 59.5 61.8 72.4 88.7 118.6 244.9 P(bin?) 66.3 49.5 36.6 28.4 19.2 20.1 Write only the letter corresponding to the correct answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University