The pressure, temperature, velocity, Mach number, and stagnation pressure downstream of the shock and Compare for helium undergoing a normal shock under the same conditions.
Answer to Problem 96P
The Mach number value of air after the normal shock through the nozzle is
The actual temperature of air after the normal shock through the nozzle
is
The actual pressure of air after the normal shock through the nozzle is
The stagnation pressure of air after the normal shock though the nozzle
is
The velocity of air after the normal shock through the nozzle is
Thus, the Mach number of helium gas after the normal shock through the nozzle
is
Thus, the actual temperature of helium after the normal shock through the nozzle is
Thus, the actual pressure of helium after the normal shock through the nozzle
is
Thus, the stagnation pressure of helium after the normal shock though the nozzle
is
Thus, the velocity of helium after the normal shock through the nozzle is
Comparison between the obtained results of air and helium is shown in below Table:
Parameters/ Conditions | Air | Helium |
Mach number value | ||
Actual temperature of air | ||
Actual pressure of air | ||
Stagnation pressure | ||
Velocity |
Explanation of Solution
Write the expression for the velocity of sound after the normal shock.
Here, velocity of sound after the shock is
Write the expression for the velocity of airafter the normal shock.
Write the expression for the Mach number for helium after the normal shock.
Here, Mach number of helium before the normal shock is
before the normal shock is
Write the expression for the actual pressure of helium gas after the normal shock.
Here, actual pressure of helium after the shock is
Write the expression for the actual temperature of helium gas after the normal shock.
Here, actual temperature of helium after the shock is
Write the expression for the actual pressure of helium gas after the normal shock.
Here, stagnation pressure of helium after the shock is
Write the expression for the velocity of sound after the normal shock.
Here, velocity of sound after the shock is
Write the expression for the velocity of helium after the normal shock.
Conclusion:
Refer to Table A-33, “One-dimensional normal-shock functions for an ideal gas with k 5 1.4”, obtain the expressions of temperature ratio, pressure ratio, stagnation pressure ratio, and Mach number after the shock for a Mach number of 2.6 before the shock.
Thus, the Mach number value of air after the normal shock through the nozzle is
Here, actual pressure after the shock is
Substitute
Thus, the actual temperature of air after the normal shock through the nozzle
is
Substitute
Thus, the actual pressure of air after the normal shock through the nozzle is
The actual pressure before the normal shock is the same as the stagnation pressure before the normal shock
Substitute
Thus, the stagnation pressure of air after the normal shock though the nozzle
is
Refer to thermodynamics properties table and interpret the value of k, and R for a temperature of
Substitute 1.4 for k,
Substitute 0.5039for
Thus, the velocity of air after the normal shock through the nozzle is
Substitute 2.6for
Thus, the Mach number of helium gas after the normal shock through the nozzle
is
Substitute 1.667 for k, 2.6for
Substitute 1.667 for k, 2.6for
Substitute 1.667 for k, 2.6for
Substitute
Thus, the actual temperature of helium after the normal shock through the nozzle is
Substitute
Thus, the actual pressure of helium after the normal shock through the nozzle
is
Since,
Substitute
Thus, the stagnation pressure of air after the normal shock though the nozzle
is
Refer Table A–1, “Molar mass, gas constant, and critical2point properties”, obtain
the value of k, and R for a temperature of
Substitute 1.667 for k,
Substitute 0.5455 for
Thus, the velocity of air after the normal shock through the nozzle is
Want to see more full solutions like this?
Chapter 17 Solutions
Thermodynamics: An Engineering Approach
- يكا - put 96** I need a detailed drawing with explanation or in wake, and the top edge of im below the free surface of the water. Determine the hydrothed if hydrostatic on the Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm. =--20125 7357 750 X 2.01arrow_forwardYou are working as an engineer in a bearing systems design company. The flow of lubricant inside a hydrodynamic bearing (µ = 0.001 kg m¯¹ s¯¹) can be approximated as a parallel, steady, two-dimensional, incompressible flow between two parallel plates. The top plate, representing the moving part of the bearing, travels at a constant speed, U, while the bottom plate remains stationary (Figure Q1). The plates are separated by a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By applying the above approximations to the Navier-Stokes equations and assuming that end effects can be neglected, the horizontal velocity profile can be shown to be U y = +h У 2h = 1 cm 1 x1 y=-h u(y) = 1 dP 2μ dx -y² + Ay + B moving plate - U stationary plate 2 I2 L = 10 cm Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm, into the page. (a) By considering the appropriate boundary conditions, show that the constants take the following forms: A = U 2h U 1 dP…arrow_forwardQuestion 2 You are an engineer working in the propulsion team for a supersonic civil transport aircraft driven by a turbojet engine, where you have oversight of the design for the engine intake and the exhaust nozzle, indicated in Figure Q2a. The turbojet engine can operate when provided with air flow in the Mach number range, 0.60 to 0.80. You are asked to analyse a condition where the aircraft is flying at 472 m/s at an altitude of 14,000 m. For all parts of the question, you can assume that the flow path of air through the engine has a circular cross section. (a) normal shock 472 m/s A B (b) intake engine altitude: 14,000 m D exhaust nozzle→ exit to atmosphere 472 m/s 50 m/s B diameter: DE = 0.30 m EX diameter: DF = 0.66 m Figure Q2: Propulsion system for a supersonic aircraft. F a) When the aircraft is at an altitude of 14,000 m, use the International Standard Atmosphere in the Module Data Book to state the local air pressure and tempera- ture. Thus show that the aircraft speed of…arrow_forward
- given below: A rectangular wing with wing twist yields the spanwise circulation distribution kbV1 roy) = kbv. (2) where k is a constant, b is the span length and V. is the free-stream velocity. The wing has an aspect ratio of 4. For all wing sections, the lift curve slope (ag) is 2 and the zero-lift angle of attack (a=0) is 0. a. Derive expressions for the downwash (w) and induced angle of attack a distributions along the span. b. Derive an expression for the induced drag coefficient. c. Calculate the span efficiency factor. d. Calculate the value of k if the wing has a washout and the difference between the geometric angles of attack of the root (y = 0) and the tip (y = tb/2) is: a(y = 0) a(y = ±b/2) = /18 Hint: Use the coordinate transformation y = cos (0)arrow_forward۳/۱ العنوان O не شكا +91x PU + 96852 A heavy car plunges into a lake during an accident and lands at the bottom of the lake on its wheels as shown in figure. The door is 1.2 m high and I m wide, and the top edge of Deine the hadrostatic force on the Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm. = -20125 750 x2.01arrow_forwardPlot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm.arrow_forward
- Q1/ A vertical, circular gate with water on one side as shown. Determine the total resultant force acting on the gate and the location of the center of pressure, use water specific weight 9.81 kN/m³ 1 m 4 marrow_forwardI need handwritten solution with sketches for eacharrow_forwardGiven answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1arrow_forward
- (b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY