CALCULUS (CLOTH)
4th Edition
ISBN: 9781319050733
Author: Rogawski
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.2, Problem 23E
To determine
To determine: To calculate .
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let f(x, y, z) = 36xz - 14y² and let C be the curve given by r(f1) = (1,
(Use symbolic notation and fractions where needed.)
[ f ds =
, f)
for 0 ≤ 1 ≤ 2. Compute fcf ds.
Compute
F. dr for the oriented curve specified.
F(x, y) = (4x2, xy), line segment from (0, 0) to (2, 2)
2. (§1.2 Exercise 4) For each of the following functions, sketch the contour lines on xy-plane corre-
sponding to z = -2,-1, 0, 1, 2, 3:
(a) z = x²y.
(b) z = x² + y² – 1.
(c) z = x² - y².
(d) z = y².
1
(e) == y(1-2 ²-²)
z
+
Chapter 17 Solutions
CALCULUS (CLOTH)
Ch. 17.1 - Prob. 1PQCh. 17.1 - Prob. 2PQCh. 17.1 - Prob. 3PQCh. 17.1 - Prob. 4PQCh. 17.1 - Prob. 1ECh. 17.1 - Prob. 2ECh. 17.1 - Prob. 3ECh. 17.1 - Prob. 4ECh. 17.1 - Prob. 5ECh. 17.1 - Prob. 6E
Ch. 17.1 - Prob. 7ECh. 17.1 - Prob. 8ECh. 17.1 - Prob. 9ECh. 17.1 - Prob. 10ECh. 17.1 - Prob. 11ECh. 17.1 - Prob. 12ECh. 17.1 - Prob. 13ECh. 17.1 - Prob. 14ECh. 17.1 - Prob. 15ECh. 17.1 - Prob. 16ECh. 17.1 - Prob. 17ECh. 17.1 - Prob. 18ECh. 17.1 - Prob. 19ECh. 17.1 - Prob. 20ECh. 17.1 - Prob. 21ECh. 17.1 - Prob. 22ECh. 17.1 - Prob. 23ECh. 17.1 - Prob. 24ECh. 17.1 - Prob. 25ECh. 17.1 - Prob. 26ECh. 17.1 - Prob. 27ECh. 17.1 - Prob. 28ECh. 17.1 - Prob. 29ECh. 17.1 - Prob. 30ECh. 17.1 - Prob. 31ECh. 17.1 - Prob. 32ECh. 17.1 - Prob. 33ECh. 17.1 - Prob. 34ECh. 17.1 - Prob. 35ECh. 17.1 - Prob. 36ECh. 17.1 - Prob. 37ECh. 17.1 - Prob. 38ECh. 17.1 - Prob. 39ECh. 17.1 - Prob. 40ECh. 17.1 - Prob. 41ECh. 17.1 - Prob. 42ECh. 17.1 - Prob. 43ECh. 17.1 - Prob. 44ECh. 17.1 - Prob. 45ECh. 17.1 - Prob. 46ECh. 17.1 - Prob. 47ECh. 17.1 - Prob. 48ECh. 17.1 - Prob. 49ECh. 17.1 - Prob. 50ECh. 17.1 - Prob. 51ECh. 17.1 - Prob. 52ECh. 17.1 - Prob. 53ECh. 17.1 - Prob. 54ECh. 17.1 - Prob. 55ECh. 17.1 - Prob. 56ECh. 17.1 - Prob. 57ECh. 17.2 - Prob. 1PQCh. 17.2 - Prob. 2PQCh. 17.2 - Prob. 3PQCh. 17.2 - Prob. 4PQCh. 17.2 - Prob. 1ECh. 17.2 - Prob. 2ECh. 17.2 - Prob. 3ECh. 17.2 - Prob. 4ECh. 17.2 - Prob. 5ECh. 17.2 - Prob. 6ECh. 17.2 - Prob. 7ECh. 17.2 - Prob. 8ECh. 17.2 - Prob. 9ECh. 17.2 - Prob. 10ECh. 17.2 - Prob. 11ECh. 17.2 - Prob. 12ECh. 17.2 - Prob. 13ECh. 17.2 - Prob. 14ECh. 17.2 - Prob. 15ECh. 17.2 - Prob. 16ECh. 17.2 - Prob. 17ECh. 17.2 - Prob. 18ECh. 17.2 - Prob. 19ECh. 17.2 - Prob. 20ECh. 17.2 - Prob. 21ECh. 17.2 - Prob. 22ECh. 17.2 - Prob. 23ECh. 17.2 - Prob. 24ECh. 17.2 - Prob. 25ECh. 17.2 - Prob. 26ECh. 17.2 - Prob. 27ECh. 17.2 - Prob. 28ECh. 17.2 - Prob. 29ECh. 17.2 - Prob. 30ECh. 17.2 - Prob. 31ECh. 17.2 - Prob. 32ECh. 17.2 - Prob. 33ECh. 17.2 - Prob. 34ECh. 17.2 - Prob. 35ECh. 17.2 - Prob. 36ECh. 17.2 - Prob. 37ECh. 17.2 - Prob. 38ECh. 17.2 - Prob. 39ECh. 17.2 - Prob. 40ECh. 17.2 - Prob. 41ECh. 17.2 - Prob. 42ECh. 17.2 - Prob. 43ECh. 17.2 - Prob. 44ECh. 17.2 - Prob. 45ECh. 17.2 - Prob. 46ECh. 17.2 - Prob. 47ECh. 17.2 - Prob. 48ECh. 17.2 - Prob. 49ECh. 17.2 - Prob. 50ECh. 17.2 - Prob. 51ECh. 17.2 - Prob. 52ECh. 17.2 - Prob. 53ECh. 17.2 - Prob. 54ECh. 17.2 - Prob. 55ECh. 17.2 - Prob. 56ECh. 17.2 - Prob. 57ECh. 17.2 - Prob. 58ECh. 17.2 - Prob. 59ECh. 17.2 - Prob. 60ECh. 17.2 - Prob. 61ECh. 17.2 - Prob. 62ECh. 17.2 - Prob. 63ECh. 17.2 - Prob. 64ECh. 17.2 - Prob. 65ECh. 17.2 - Prob. 66ECh. 17.2 - Prob. 67ECh. 17.2 - Prob. 68ECh. 17.2 - Prob. 69ECh. 17.2 - Prob. 70ECh. 17.2 - Prob. 71ECh. 17.2 - Prob. 72ECh. 17.2 - Prob. 73ECh. 17.2 - Prob. 74ECh. 17.2 - Prob. 75ECh. 17.3 - Prob. 1PQCh. 17.3 - Prob. 2PQCh. 17.3 - Prob. 3PQCh. 17.3 - Prob. 4PQCh. 17.3 - Prob. 1ECh. 17.3 - Prob. 2ECh. 17.3 - Prob. 3ECh. 17.3 - Prob. 4ECh. 17.3 - Prob. 5ECh. 17.3 - Prob. 6ECh. 17.3 - Prob. 7ECh. 17.3 - Prob. 8ECh. 17.3 - Prob. 9ECh. 17.3 - Prob. 10ECh. 17.3 - Prob. 11ECh. 17.3 - Prob. 12ECh. 17.3 - Prob. 13ECh. 17.3 - Prob. 14ECh. 17.3 - Prob. 15ECh. 17.3 - Prob. 16ECh. 17.3 - Prob. 17ECh. 17.3 - Prob. 18ECh. 17.3 - Prob. 19ECh. 17.3 - Prob. 20ECh. 17.3 - Prob. 21ECh. 17.3 - Prob. 22ECh. 17.3 - Prob. 23ECh. 17.3 - Prob. 24ECh. 17.3 - Prob. 25ECh. 17.3 - Prob. 26ECh. 17.3 - Prob. 27ECh. 17.3 - Prob. 28ECh. 17.3 - Prob. 29ECh. 17.3 - Prob. 30ECh. 17.3 - Prob. 31ECh. 17.3 - Prob. 32ECh. 17.3 - Prob. 33ECh. 17.3 - Prob. 34ECh. 17.3 - Prob. 35ECh. 17.4 - Prob. 1PQCh. 17.4 - Prob. 2PQCh. 17.4 - Prob. 3PQCh. 17.4 - Prob. 4PQCh. 17.4 - Prob. 5PQCh. 17.4 - Prob. 6PQCh. 17.4 - Prob. 1ECh. 17.4 - Prob. 2ECh. 17.4 - Prob. 3ECh. 17.4 - Prob. 4ECh. 17.4 - Prob. 5ECh. 17.4 - Prob. 6ECh. 17.4 - Prob. 7ECh. 17.4 - Prob. 8ECh. 17.4 - Prob. 9ECh. 17.4 - Prob. 10ECh. 17.4 - Prob. 11ECh. 17.4 - Prob. 12ECh. 17.4 - Prob. 13ECh. 17.4 - Prob. 14ECh. 17.4 - Prob. 15ECh. 17.4 - Prob. 16ECh. 17.4 - Prob. 17ECh. 17.4 - Prob. 18ECh. 17.4 - Prob. 19ECh. 17.4 - Prob. 20ECh. 17.4 - Prob. 21ECh. 17.4 - Prob. 22ECh. 17.4 - Prob. 23ECh. 17.4 - Prob. 24ECh. 17.4 - Prob. 25ECh. 17.4 - Prob. 26ECh. 17.4 - Prob. 27ECh. 17.4 - Prob. 28ECh. 17.4 - Prob. 29ECh. 17.4 - Prob. 30ECh. 17.4 - Prob. 31ECh. 17.4 - Prob. 32ECh. 17.4 - Prob. 33ECh. 17.4 - Prob. 34ECh. 17.4 - Prob. 35ECh. 17.4 - Prob. 36ECh. 17.4 - Prob. 37ECh. 17.4 - Prob. 38ECh. 17.4 - Prob. 39ECh. 17.4 - Prob. 40ECh. 17.4 - Prob. 41ECh. 17.4 - Prob. 42ECh. 17.4 - Prob. 43ECh. 17.4 - Prob. 44ECh. 17.4 - Prob. 45ECh. 17.4 - Prob. 46ECh. 17.4 - Prob. 47ECh. 17.4 - Prob. 48ECh. 17.4 - Prob. 49ECh. 17.4 - Prob. 50ECh. 17.4 - Prob. 51ECh. 17.5 - Prob. 1PQCh. 17.5 - Prob. 2PQCh. 17.5 - Prob. 3PQCh. 17.5 - Prob. 4PQCh. 17.5 - Prob. 5PQCh. 17.5 - Prob. 6PQCh. 17.5 - Prob. 7PQCh. 17.5 - Prob. 1ECh. 17.5 - Prob. 2ECh. 17.5 - Prob. 3ECh. 17.5 - Prob. 4ECh. 17.5 - Prob. 5ECh. 17.5 - Prob. 6ECh. 17.5 - Prob. 7ECh. 17.5 - Prob. 8ECh. 17.5 - Prob. 9ECh. 17.5 - Prob. 10ECh. 17.5 - Prob. 11ECh. 17.5 - Prob. 12ECh. 17.5 - Prob. 13ECh. 17.5 - Prob. 14ECh. 17.5 - Prob. 15ECh. 17.5 - Prob. 16ECh. 17.5 - Prob. 17ECh. 17.5 - Prob. 18ECh. 17.5 - Prob. 19ECh. 17.5 - Prob. 20ECh. 17.5 - Prob. 21ECh. 17.5 - Prob. 22ECh. 17.5 - Prob. 23ECh. 17.5 - Prob. 24ECh. 17.5 - Prob. 25ECh. 17.5 - Prob. 26ECh. 17.5 - Prob. 27ECh. 17.5 - Prob. 28ECh. 17.5 - Prob. 29ECh. 17.5 - Prob. 30ECh. 17.5 - Prob. 31ECh. 17.5 - Prob. 32ECh. 17.5 - Prob. 33ECh. 17.5 - Prob. 34ECh. 17.5 - Prob. 35ECh. 17.5 - Prob. 36ECh. 17.5 - Prob. 37ECh. 17.5 - Prob. 38ECh. 17 - Prob. 1CRECh. 17 - Prob. 2CRECh. 17 - Prob. 3CRECh. 17 - Prob. 4CRECh. 17 - Prob. 5CRECh. 17 - Prob. 6CRECh. 17 - Prob. 7CRECh. 17 - Prob. 8CRECh. 17 - Prob. 9CRECh. 17 - Prob. 10CRECh. 17 - Prob. 11CRECh. 17 - Prob. 12CRECh. 17 - Prob. 13CRECh. 17 - Prob. 14CRECh. 17 - Prob. 15CRECh. 17 - Prob. 16CRECh. 17 - Prob. 17CRECh. 17 - Prob. 18CRECh. 17 - Prob. 19CRECh. 17 - Prob. 20CRECh. 17 - Prob. 21CRECh. 17 - Prob. 22CRECh. 17 - Prob. 23CRECh. 17 - Prob. 24CRECh. 17 - Prob. 25CRECh. 17 - Prob. 26CRECh. 17 - Prob. 27CRECh. 17 - Prob. 28CRECh. 17 - Prob. 29CRECh. 17 - Prob. 30CRECh. 17 - Prob. 31CRECh. 17 - Prob. 32CRECh. 17 - Prob. 33CRECh. 17 - Prob. 34CRECh. 17 - Prob. 35CRECh. 17 - Prob. 36CRECh. 17 - Prob. 37CRECh. 17 - Prob. 38CRECh. 17 - Prob. 39CRECh. 17 - Prob. 40CRECh. 17 - Prob. 41CRECh. 17 - Prob. 42CRECh. 17 - Prob. 43CRECh. 17 - Prob. 44CRECh. 17 - Prob. 45CRECh. 17 - Prob. 46CRECh. 17 - Prob. 47CRECh. 17 - Prob. 48CRECh. 17 - Prob. 49CRECh. 17 - Prob. 50CRECh. 17 - Prob. 51CRECh. 17 - Prob. 52CRECh. 17 - Prob. 53CRECh. 17 - Prob. 54CRECh. 17 - Prob. 55CRECh. 17 - Prob. 56CRECh. 17 - Prob. 57CRECh. 17 - Prob. 58CRECh. 17 - Prob. 59CRECh. 17 - Prob. 60CRECh. 17 - Prob. 61CRE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 13. If F-xyi-y² j, evaluate [F-dr where C is the curve y=2x² in the xy-plane from (0,0) to (1,2). Answer: 13 6arrow_forwardLet f(x, y, z) = 36xz - 14y² and let C be the curve given by r(t) = (1, 2) for 0 ≤ 1 ≤ 2. Compute fc f ds. t (Use symbolic notation and fractions where needed.) √f ds = [32 Incorrectarrow_forward1. Consider the vector-valued function F(t) = sin(2t) t (2, 1, -2), a) Find the domain of F. b) Show that F is continuous at t = 0. ; et, t 1-√1+t, t #0 t = 0. = (1/2/3/17, -2). 2. Consider the vector-valued function R(t) with R(1) = (1,2,−1) and R (t) = (1 a) Find '(1) if (t) = (-2, -3t, t²) × R'(t). b) Find the equation of the normal plane to the graph of Ả at t = 1. c) Find the arc length of the graph of R from the point at t = 1 to the point at t = 3. d) Find the curvature of the graph of R at t = 1.arrow_forward
- True or False? Vector functions r 1 = ti + t 2 j, 0 ≤ t ≤ 1 , and r 2 =(1 — t )i+(1 — t ) 2 j, 0 ≤ t ≤ 1 , define the same curvearrow_forward35. Evaluate F.dr: (a) F = (x+z)i +zj+yk. C is the line from (2,4,4) to (1,5,2). (b) F= x²i+zsin(yz)j + y sin(yz)k. C is the curve from A4(0,0,1) to B(3,1,2) as shown below. B A (c) F = yi-xj+zk. C is the circle of radius 3 centered on the z-axis in the plane z=4 oriented clockwise when viewed from above. (d) F = 4x³i + (x+y)j. C is the curve y=sin(2x) from (0,0) to (7/2,0). (e) F = (-y³ + sin(x²))ī + (x³ − ln(y² +1)) j . C is the circle of radius 5 centered at (0,0) in the .xy- plane oriented counterclockwise.arrow_forwardNo. 6 (a, b, c)arrow_forward
- 7. Let f(z) = . Use the polar form of the Cauchy-Riemann equations to determine where f is differentiable.arrow_forward5. Let C be the portion of the parabola y = x², oriented from the starting point (0, 0) towards the end point (3,9). Find the unit tangent vector T and the unit normal vector n to C at the point (1, 1).arrow_forwardLet f (x, y) = e3x-4y). Find the equation for the tangent plane to the graph of ƒ at the point (1,2). (Use symbolic notation and fractions where needed.) z =arrow_forward
- 13. Find an equation for the tangent plane of the graph of f at the point (xo, yo, f(xo, yo)) for: (a) ƒ: R²2 → R, (x, y) → x − y +2, (xo, yo) = (1, 1) (b) (c) ƒ: R² → R, (x, y) ↔ x² + 4y², (xo, yo) = (2, -1) f: ƒ: R² R, (x, y) → xy, → (xo, yo) = (-1, −1) (d) f(x, y) = log (x + y) + x cos y + arctan(x + y), (xo, yo) = (1, 0) -2 (e) f(x, y) = √√√x² + y², (f) f(x, y) = xy, (xo, yo) = (1, 1) (xo, yo) = (2, 1)arrow_forwardConsider F and C below. F(x, y, z)=yzi + xzj + (xy + 18z) k C is the line segment from (1, 0, -3) to (4, 6, 2) (a) Find a function f such that F = Vf. f(x, y, z) = (b) Use part (a) to evaluate Ja Vf. dr along the given curve C.arrow_forwardTrue or False?The Vector functions r 1 = ti + t2 j, 0 ≤ t ≤ 1 , and r 2 =(1 — t )i+(1 — t2 )j, 0 ≤ t ≤ 1 , define the same curvearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY