CALCULUS (CLOTH)
4th Edition
ISBN: 9781319050733
Author: Rogawski
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 17, Problem 55CRE
To determine
The value of .
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
->
Evaluate F.dr, where F (x, y, z) = - yi + xj + z²k and C is the curve of
C
intersection of the plane y + z = 2 and the cylinder x? + y? = 1.
Identify the surface by eliminating the parameters from the vector-valued function
r(u,v) = 3 cosv cosui + 3 cosv sinuj + Śsinvk
a. plane
b. sphere
c. paraboloid
d. cylinder
e. ellipsoid
d
b
a
e
(D
Draw the parameterized surface. (Decide on a reasonable domain for u and v.)
Chapter 17 Solutions
CALCULUS (CLOTH)
Ch. 17.1 - Prob. 1PQCh. 17.1 - Prob. 2PQCh. 17.1 - Prob. 3PQCh. 17.1 - Prob. 4PQCh. 17.1 - Prob. 1ECh. 17.1 - Prob. 2ECh. 17.1 - Prob. 3ECh. 17.1 - Prob. 4ECh. 17.1 - Prob. 5ECh. 17.1 - Prob. 6E
Ch. 17.1 - Prob. 7ECh. 17.1 - Prob. 8ECh. 17.1 - Prob. 9ECh. 17.1 - Prob. 10ECh. 17.1 - Prob. 11ECh. 17.1 - Prob. 12ECh. 17.1 - Prob. 13ECh. 17.1 - Prob. 14ECh. 17.1 - Prob. 15ECh. 17.1 - Prob. 16ECh. 17.1 - Prob. 17ECh. 17.1 - Prob. 18ECh. 17.1 - Prob. 19ECh. 17.1 - Prob. 20ECh. 17.1 - Prob. 21ECh. 17.1 - Prob. 22ECh. 17.1 - Prob. 23ECh. 17.1 - Prob. 24ECh. 17.1 - Prob. 25ECh. 17.1 - Prob. 26ECh. 17.1 - Prob. 27ECh. 17.1 - Prob. 28ECh. 17.1 - Prob. 29ECh. 17.1 - Prob. 30ECh. 17.1 - Prob. 31ECh. 17.1 - Prob. 32ECh. 17.1 - Prob. 33ECh. 17.1 - Prob. 34ECh. 17.1 - Prob. 35ECh. 17.1 - Prob. 36ECh. 17.1 - Prob. 37ECh. 17.1 - Prob. 38ECh. 17.1 - Prob. 39ECh. 17.1 - Prob. 40ECh. 17.1 - Prob. 41ECh. 17.1 - Prob. 42ECh. 17.1 - Prob. 43ECh. 17.1 - Prob. 44ECh. 17.1 - Prob. 45ECh. 17.1 - Prob. 46ECh. 17.1 - Prob. 47ECh. 17.1 - Prob. 48ECh. 17.1 - Prob. 49ECh. 17.1 - Prob. 50ECh. 17.1 - Prob. 51ECh. 17.1 - Prob. 52ECh. 17.1 - Prob. 53ECh. 17.1 - Prob. 54ECh. 17.1 - Prob. 55ECh. 17.1 - Prob. 56ECh. 17.1 - Prob. 57ECh. 17.2 - Prob. 1PQCh. 17.2 - Prob. 2PQCh. 17.2 - Prob. 3PQCh. 17.2 - Prob. 4PQCh. 17.2 - Prob. 1ECh. 17.2 - Prob. 2ECh. 17.2 - Prob. 3ECh. 17.2 - Prob. 4ECh. 17.2 - Prob. 5ECh. 17.2 - Prob. 6ECh. 17.2 - Prob. 7ECh. 17.2 - Prob. 8ECh. 17.2 - Prob. 9ECh. 17.2 - Prob. 10ECh. 17.2 - Prob. 11ECh. 17.2 - Prob. 12ECh. 17.2 - Prob. 13ECh. 17.2 - Prob. 14ECh. 17.2 - Prob. 15ECh. 17.2 - Prob. 16ECh. 17.2 - Prob. 17ECh. 17.2 - Prob. 18ECh. 17.2 - Prob. 19ECh. 17.2 - Prob. 20ECh. 17.2 - Prob. 21ECh. 17.2 - Prob. 22ECh. 17.2 - Prob. 23ECh. 17.2 - Prob. 24ECh. 17.2 - Prob. 25ECh. 17.2 - Prob. 26ECh. 17.2 - Prob. 27ECh. 17.2 - Prob. 28ECh. 17.2 - Prob. 29ECh. 17.2 - Prob. 30ECh. 17.2 - Prob. 31ECh. 17.2 - Prob. 32ECh. 17.2 - Prob. 33ECh. 17.2 - Prob. 34ECh. 17.2 - Prob. 35ECh. 17.2 - Prob. 36ECh. 17.2 - Prob. 37ECh. 17.2 - Prob. 38ECh. 17.2 - Prob. 39ECh. 17.2 - Prob. 40ECh. 17.2 - Prob. 41ECh. 17.2 - Prob. 42ECh. 17.2 - Prob. 43ECh. 17.2 - Prob. 44ECh. 17.2 - Prob. 45ECh. 17.2 - Prob. 46ECh. 17.2 - Prob. 47ECh. 17.2 - Prob. 48ECh. 17.2 - Prob. 49ECh. 17.2 - Prob. 50ECh. 17.2 - Prob. 51ECh. 17.2 - Prob. 52ECh. 17.2 - Prob. 53ECh. 17.2 - Prob. 54ECh. 17.2 - Prob. 55ECh. 17.2 - Prob. 56ECh. 17.2 - Prob. 57ECh. 17.2 - Prob. 58ECh. 17.2 - Prob. 59ECh. 17.2 - Prob. 60ECh. 17.2 - Prob. 61ECh. 17.2 - Prob. 62ECh. 17.2 - Prob. 63ECh. 17.2 - Prob. 64ECh. 17.2 - Prob. 65ECh. 17.2 - Prob. 66ECh. 17.2 - Prob. 67ECh. 17.2 - Prob. 68ECh. 17.2 - Prob. 69ECh. 17.2 - Prob. 70ECh. 17.2 - Prob. 71ECh. 17.2 - Prob. 72ECh. 17.2 - Prob. 73ECh. 17.2 - Prob. 74ECh. 17.2 - Prob. 75ECh. 17.3 - Prob. 1PQCh. 17.3 - Prob. 2PQCh. 17.3 - Prob. 3PQCh. 17.3 - Prob. 4PQCh. 17.3 - Prob. 1ECh. 17.3 - Prob. 2ECh. 17.3 - Prob. 3ECh. 17.3 - Prob. 4ECh. 17.3 - Prob. 5ECh. 17.3 - Prob. 6ECh. 17.3 - Prob. 7ECh. 17.3 - Prob. 8ECh. 17.3 - Prob. 9ECh. 17.3 - Prob. 10ECh. 17.3 - Prob. 11ECh. 17.3 - Prob. 12ECh. 17.3 - Prob. 13ECh. 17.3 - Prob. 14ECh. 17.3 - Prob. 15ECh. 17.3 - Prob. 16ECh. 17.3 - Prob. 17ECh. 17.3 - Prob. 18ECh. 17.3 - Prob. 19ECh. 17.3 - Prob. 20ECh. 17.3 - Prob. 21ECh. 17.3 - Prob. 22ECh. 17.3 - Prob. 23ECh. 17.3 - Prob. 24ECh. 17.3 - Prob. 25ECh. 17.3 - Prob. 26ECh. 17.3 - Prob. 27ECh. 17.3 - Prob. 28ECh. 17.3 - Prob. 29ECh. 17.3 - Prob. 30ECh. 17.3 - Prob. 31ECh. 17.3 - Prob. 32ECh. 17.3 - Prob. 33ECh. 17.3 - Prob. 34ECh. 17.3 - Prob. 35ECh. 17.4 - Prob. 1PQCh. 17.4 - Prob. 2PQCh. 17.4 - Prob. 3PQCh. 17.4 - Prob. 4PQCh. 17.4 - Prob. 5PQCh. 17.4 - Prob. 6PQCh. 17.4 - Prob. 1ECh. 17.4 - Prob. 2ECh. 17.4 - Prob. 3ECh. 17.4 - Prob. 4ECh. 17.4 - Prob. 5ECh. 17.4 - Prob. 6ECh. 17.4 - Prob. 7ECh. 17.4 - Prob. 8ECh. 17.4 - Prob. 9ECh. 17.4 - Prob. 10ECh. 17.4 - Prob. 11ECh. 17.4 - Prob. 12ECh. 17.4 - Prob. 13ECh. 17.4 - Prob. 14ECh. 17.4 - Prob. 15ECh. 17.4 - Prob. 16ECh. 17.4 - Prob. 17ECh. 17.4 - Prob. 18ECh. 17.4 - Prob. 19ECh. 17.4 - Prob. 20ECh. 17.4 - Prob. 21ECh. 17.4 - Prob. 22ECh. 17.4 - Prob. 23ECh. 17.4 - Prob. 24ECh. 17.4 - Prob. 25ECh. 17.4 - Prob. 26ECh. 17.4 - Prob. 27ECh. 17.4 - Prob. 28ECh. 17.4 - Prob. 29ECh. 17.4 - Prob. 30ECh. 17.4 - Prob. 31ECh. 17.4 - Prob. 32ECh. 17.4 - Prob. 33ECh. 17.4 - Prob. 34ECh. 17.4 - Prob. 35ECh. 17.4 - Prob. 36ECh. 17.4 - Prob. 37ECh. 17.4 - Prob. 38ECh. 17.4 - Prob. 39ECh. 17.4 - Prob. 40ECh. 17.4 - Prob. 41ECh. 17.4 - Prob. 42ECh. 17.4 - Prob. 43ECh. 17.4 - Prob. 44ECh. 17.4 - Prob. 45ECh. 17.4 - Prob. 46ECh. 17.4 - Prob. 47ECh. 17.4 - Prob. 48ECh. 17.4 - Prob. 49ECh. 17.4 - Prob. 50ECh. 17.4 - Prob. 51ECh. 17.5 - Prob. 1PQCh. 17.5 - Prob. 2PQCh. 17.5 - Prob. 3PQCh. 17.5 - Prob. 4PQCh. 17.5 - Prob. 5PQCh. 17.5 - Prob. 6PQCh. 17.5 - Prob. 7PQCh. 17.5 - Prob. 1ECh. 17.5 - Prob. 2ECh. 17.5 - Prob. 3ECh. 17.5 - Prob. 4ECh. 17.5 - Prob. 5ECh. 17.5 - Prob. 6ECh. 17.5 - Prob. 7ECh. 17.5 - Prob. 8ECh. 17.5 - Prob. 9ECh. 17.5 - Prob. 10ECh. 17.5 - Prob. 11ECh. 17.5 - Prob. 12ECh. 17.5 - Prob. 13ECh. 17.5 - Prob. 14ECh. 17.5 - Prob. 15ECh. 17.5 - Prob. 16ECh. 17.5 - Prob. 17ECh. 17.5 - Prob. 18ECh. 17.5 - Prob. 19ECh. 17.5 - Prob. 20ECh. 17.5 - Prob. 21ECh. 17.5 - Prob. 22ECh. 17.5 - Prob. 23ECh. 17.5 - Prob. 24ECh. 17.5 - Prob. 25ECh. 17.5 - Prob. 26ECh. 17.5 - Prob. 27ECh. 17.5 - Prob. 28ECh. 17.5 - Prob. 29ECh. 17.5 - Prob. 30ECh. 17.5 - Prob. 31ECh. 17.5 - Prob. 32ECh. 17.5 - Prob. 33ECh. 17.5 - Prob. 34ECh. 17.5 - Prob. 35ECh. 17.5 - Prob. 36ECh. 17.5 - Prob. 37ECh. 17.5 - Prob. 38ECh. 17 - Prob. 1CRECh. 17 - Prob. 2CRECh. 17 - Prob. 3CRECh. 17 - Prob. 4CRECh. 17 - Prob. 5CRECh. 17 - Prob. 6CRECh. 17 - Prob. 7CRECh. 17 - Prob. 8CRECh. 17 - Prob. 9CRECh. 17 - Prob. 10CRECh. 17 - Prob. 11CRECh. 17 - Prob. 12CRECh. 17 - Prob. 13CRECh. 17 - Prob. 14CRECh. 17 - Prob. 15CRECh. 17 - Prob. 16CRECh. 17 - Prob. 17CRECh. 17 - Prob. 18CRECh. 17 - Prob. 19CRECh. 17 - Prob. 20CRECh. 17 - Prob. 21CRECh. 17 - Prob. 22CRECh. 17 - Prob. 23CRECh. 17 - Prob. 24CRECh. 17 - Prob. 25CRECh. 17 - Prob. 26CRECh. 17 - Prob. 27CRECh. 17 - Prob. 28CRECh. 17 - Prob. 29CRECh. 17 - Prob. 30CRECh. 17 - Prob. 31CRECh. 17 - Prob. 32CRECh. 17 - Prob. 33CRECh. 17 - Prob. 34CRECh. 17 - Prob. 35CRECh. 17 - Prob. 36CRECh. 17 - Prob. 37CRECh. 17 - Prob. 38CRECh. 17 - Prob. 39CRECh. 17 - Prob. 40CRECh. 17 - Prob. 41CRECh. 17 - Prob. 42CRECh. 17 - Prob. 43CRECh. 17 - Prob. 44CRECh. 17 - Prob. 45CRECh. 17 - Prob. 46CRECh. 17 - Prob. 47CRECh. 17 - Prob. 48CRECh. 17 - Prob. 49CRECh. 17 - Prob. 50CRECh. 17 - Prob. 51CRECh. 17 - Prob. 52CRECh. 17 - Prob. 53CRECh. 17 - Prob. 54CRECh. 17 - Prob. 55CRECh. 17 - Prob. 56CRECh. 17 - Prob. 57CRECh. 17 - Prob. 58CRECh. 17 - Prob. 59CRECh. 17 - Prob. 60CRECh. 17 - Prob. 61CRE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- please help with this!arrow_forward4. Let S is the surface z = 5 - r - y, 1<: in R. Let S be oriented with the normal vector pointing upward direction. (a) Let F(r, y, 2) = (y., z, 3). Use Stokes Theorem to evaluate (b) Verify Stokes' theorem for part (a).arrow_forwardConsider the surface that can be parameterized as for u, v = [0, 2π). x(u, v) y (u, v) z (u, v) = = = COS V (u² - 1) (u² − 1) sin v U Let x¹ u and ² v. Find the line clement for the surface. What is the metric tensor and the dual metric tensor? (b) (c) (d) What is the value of the component R212 of the Riemann curvature tensor? Make sure you simplify your answer. Determine the values of all the Christoffel coefficients of the surface.arrow_forward
- Use Stokes' Theorem to evaluate of intersection of the plane x + 3y +z = 12 with the coordinate planes. (Assume that C is oriented counterclockwise as viewed from above.) F. dr where F = (x + 6z)i + (8x + y)j + (10y −z) k_and C is the curvearrow_forward2. Let S be the surface given by r(u, v) = (u, u² + v², v). Find the equation of the tangent plane at (2, 5, 1) in terms of (u, v) as well as in terms of (x, y, z).arrow_forwardFind both parametric and rectangular representations for the plane tangent to r(u,v)=u2i+ucos(v)j+usin(v)kr(u,v)=u2i+ucos(v)j+usin(v)k at the point P(4,−2,0)P(4,−2,0).One possible parametric representation has the form⟨4−4u⟨4−4u , , 4v⟩4v⟩(Note that parametric representations are not unique. If your first and third components look different than the ones presented here, you will need to adjust your parameters so that they do match, and then the other components should match the ones expected here as well.)The equation for this plane in rectangular coordinates has the form x+x+ y+y+ z+z+ =0arrow_forward
- AM (2) - Edited Let W be the plane with equation x + 2y + 2z = 1. Define the function f (x,y, z) to be f(x, y, z) = distance from (x, y, z) to W. %3D (a) For each real number k > 0, the level surface f(x, Y, z) = k can be described in terms of other familiar surfaces. Give a geometric description of the level surface f(x, y, z) = k. Be as precise as possible when explaining your answer. %3D (b) For each real number k > 0, produce an explicit equation for the level surface f(r, y, z) = k. (c) Consider the function g = f² (distance square). Find the partial derivatives (r, y, z) and Buể (T, y, z). What do you notice? (d) Let F(t) be a single-variable function. The following table gives some relevant values of this function. F F' F" t = 0 -4 10 t = 1 13 -1 t = 2 -2 9. -3 82h aydz Suppose that h(x, y, z) = F(g(x, Y, z)). Find values of (0,0, 2) and (0, 0, 2) 3:07 7 days ago Dreamland Glass Animals 3:21 Dreamland Glass Animals The Score (Expanded Editi Fugees ADE 7 days ago 3:59 Heat Waves…arrow_forwardLet S be the quadratic surface given by S = {(x, y, z) | z = 4 - x² - y², z ≥ 0}, oriented with the upward pointing normal and parameterized by Þ(u, v) = (u, v, 4 − u² v²). Let F= yzi-xzj+k. Give the associated tangent vectors T, and T, and the normal vector T₂ × Tv. Give your answers in the form (*, *, * ). Tu(u, v) = T, (u, v) = Tu x Tv (u, v) = Calculate the value of the surface integral I = O -2π -4 T 2π •//. F 4 π F. ds.arrow_forwardGiven F=yi-zj+0k and parametric surface (u,v) = ui + v²j+(u-v) for 0arrow_forwardLet F = (z, 0, y) and let S be the oriented surface parametrized by Þ(u, v) = (u² – v, u, v²) for 0 ≤ u ≤ 3, −1 ≤ v ≤ 4. (a) Calculate N and F. N as functions of u and v. (Use symbolic notation and fractions where needed.) N = (2v,-4uv,1) F.N= (b) Calculate the normal component of F to the surface at P = (6,3,9) = Þ(3, 3). (Use symbolic notation and fractions where needed.) normal component at P = Incorrect 2v³+u IF (c) Calculate F. ds. (Give your answer as a whole number.) F.dS= 63 1333 Incorrectarrow_forwardMatch each parametrization with the corresponding surface. (i) (u, cos (u), sin (v)) Z (iv) (u, v³, v) (ii) Answer Bank (u, u + v, v) (cos (u) sin (v), 3 cos (u) sin (u), cos (v)) (v) (iii) (u, u (2+ cos (v)), u (2+ sin (u)))arrow_forwardPlease show all work!arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Introduction to Triple Integrals; Author: Mathispower4u;https://www.youtube.com/watch?v=CPR0ZD0IYVE;License: Standard YouTube License, CC-BY