Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17.1, Problem 5P
Determine the radius of gyration kr of the body. The specific weight of the material is γ = 380 lb/ft3.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. Determine the radius of gyration kz
for the column's cross-sectional area.
4d
The dimension d is given.
2d
4d
4d
4d
Z
h
y
g(x)
density p = 800
kg
m³
Determine the cone's radius of gyration about the x-axis.
2h
x
An engineering student has modelled a truncated cone in CAD software by rotating the coloured area about
the x-axis. The y-coordinate can be described by the equation g(x) = + 1 and the cup has constant
6
The cone has dimensions h = 1 m and l = 6 m.
X
Determine the mass moment of inertia of the figure shown about the x, y and z axis. The materials weighs 500N/m3. Also determine the radius of gyration about each axis.
Chapter 17 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 17.1 - Determine the moment of inertia Iy for the slender...Ch. 17.1 - The solid cylinder has an outer radius R1 height...Ch. 17.1 - Determine the moment of inertia of the thin ring...Ch. 17.1 - The paraboloid is formed by revolving the shaded...Ch. 17.1 - Determine the radius of gyration kr of the body....Ch. 17.1 - The sphere is formed by revolving the shaded area...Ch. 17.1 - The frustum is formed by rotating the shaded area...Ch. 17.1 - Prob. 8PCh. 17.1 - Prob. 9PCh. 17.1 - The pendulum consists of a 4-kg circular plate and...
Ch. 17.1 - The assembly is made of the slender rods that have...Ch. 17.1 - Prob. 12PCh. 17.1 - The wheel consists of a thin ring having a mass of...Ch. 17.1 - If the large ring, small ring and each of the...Ch. 17.1 - Determine the moment of inertia about an axis...Ch. 17.1 - Prob. 16PCh. 17.1 - Determine the location y of the center of mass G...Ch. 17.1 - Prob. 18PCh. 17.1 - Prob. 19PCh. 17.1 - Determine the moment of inertia of the wheel about...Ch. 17.1 - The pendulum consists of the 3-kg slender rod and...Ch. 17.1 - Prob. 22PCh. 17.1 - Determine the moment of inertia of the overhung...Ch. 17.3 - Draw the free-body and kinetic diagrams of the...Ch. 17.3 - Prob. 2PPCh. 17.3 - Prob. 1FPCh. 17.3 - Prob. 2FPCh. 17.3 - Prob. 3FPCh. 17.3 - Prob. 4FPCh. 17.3 - At the instant shown both rods of negligible mass...Ch. 17.3 - Prob. 6FPCh. 17.3 - The door has a weight of 200 lb and a center of...Ch. 17.3 - The door has a weight or 200 lb and a center of...Ch. 17.3 - The jet aircraft has a total mass of 22 Mg and a...Ch. 17.3 - The sports car has a weight of 4500 lb and center...Ch. 17.3 - The assembly has a mass of 8 Mg and is hoisted...Ch. 17.3 - The assembly has a mass of 4 Mg and is hoisted...Ch. 17.3 - The uniform girder AB has a mass of 8 Mg....Ch. 17.3 - A car having a weight of 4000 lb begins to skid...Ch. 17.3 - A force of P = 300 N is applied to the 60-kg cart....Ch. 17.3 - Determine the largest force P that can be applied...Ch. 17.3 - The trailer with its load has a mass of 150-kg and...Ch. 17.3 - The desk has a weight of 75 lb and a center of...Ch. 17.3 - The desk has a weight of 75 lb and a center of...Ch. 17.3 - The 150-kg uniform crate rests on the 10-kg cart....Ch. 17.3 - The 150-kg uniform crate rests on the 10-kg cart....Ch. 17.3 - The bar has a weight per length w and is supported...Ch. 17.3 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17.3 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17.3 - The uniform crate has a mass of 50 kg and rests on...Ch. 17.3 - Determine the acceleration of the 150-lb cabinet...Ch. 17.3 - Prob. 44PCh. 17.3 - Prob. 45PCh. 17.3 - Prob. 46PCh. 17.3 - Prob. 47PCh. 17.3 - The snowmobile has a weight of 250 lb, centered at...Ch. 17.3 - If the carts mass is 30 kg and it is subjected to...Ch. 17.3 - Prob. 50PCh. 17.3 - The pipe has a mass of 800 kg and is being towed...Ch. 17.3 - The pipe has a mass of 800 kg and is being towed...Ch. 17.3 - Prob. 53PCh. 17.3 - Prob. 54PCh. 17.3 - Prob. 55PCh. 17.3 - Prob. 56PCh. 17.4 - The 100-kg wheel has a radius of gyration about...Ch. 17.4 - Prob. 8FPCh. 17.4 - Prob. 9FPCh. 17.4 - Prob. 10FPCh. 17.4 - Prob. 11FPCh. 17.4 - Prob. 12FPCh. 17.4 - The 10-kg wheel has a radius of gyration kA = 200...Ch. 17.4 - The uniform 24-kg plate is released from rest at...Ch. 17.4 - The uniform slender rod has a mass m. If it is...Ch. 17.4 - The tent rod has a mass of 2 kg/m. If it is...Ch. 17.4 - If a horizontal force of P = 100 N is applied to...Ch. 17.4 - The 10-lb bar is pinned at its center O and...Ch. 17.4 - The 10-lb bar is pinned at its center O and...Ch. 17.4 - A cord is wrapped around the outer surface of the...Ch. 17.4 - Disk A has a weight of 5 lb and disk B has a...Ch. 17.4 - Prob. 66PCh. 17.4 - If the cord at B suddenly fails, determine the...Ch. 17.4 - Prob. 68PCh. 17.4 - The 20-kg roll of paper has a radius of gyration...Ch. 17.4 - The 20-kg roll of paper has a radius of gyration...Ch. 17.4 - The reel of cable has a mass of 400 kg and a...Ch. 17.4 - Prob. 72PCh. 17.4 - Cable is unwound from a spool supported on small...Ch. 17.4 - The 5-kg cylinder is initially at rest when it is...Ch. 17.4 - Prob. 75PCh. 17.4 - Prob. 76PCh. 17.4 - Disk D turns with a constant clockwise angular...Ch. 17.4 - Prob. 78PCh. 17.4 - Prob. 79PCh. 17.4 - Prob. 80PCh. 17.4 - Prob. 81PCh. 17.4 - Prob. 82PCh. 17.4 - Prob. 83PCh. 17.4 - Prob. 84PCh. 17.4 - Prob. 85PCh. 17.4 - Prob. 86PCh. 17.4 - Prob. 87PCh. 17.4 - The 100-kg pendulum has a center of mass at G and...Ch. 17.5 - The Catherine wheel is a firework that consists of...Ch. 17.5 - The uniform 60-kg slender bar is initially at rest...Ch. 17.5 - Prob. 14FPCh. 17.5 - Prob. 15FPCh. 17.5 - The 20- kg sphere rolls down the inclined plane...Ch. 17.5 - The 200-kg spool has a radius of gyration about...Ch. 17.5 - The 12-kg slender rod is pinned to a small roller...Ch. 17.5 - If the disk in Fig. 17-19 rolls without slipping,...Ch. 17.5 - The 20-kg punching bag has a radius of gyration...Ch. 17.5 - The uniform 150-lb beam is initially at rest when...Ch. 17.5 - The tire has a weight of 30 lb and a radius of...Ch. 17.5 - The tire has a weight of 30 lb and a radius of...Ch. 17.5 - The spool has a mass of 100 kg and a radius of...Ch. 17.5 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17.5 - The spool has a mass of 100 kg and a radius of...Ch. 17.5 - The 12-kg uniform bar is supported by a roller at...Ch. 17.5 - A force of F= 10 N is applied to the 10-kg ring as...Ch. 17.5 - If the coefficient of static friction at C is s =...Ch. 17.5 - The 25-lb slender rod has a length of 6 ft. Using...Ch. 17.5 - The 15-lb circular plate is suspended from a pin...Ch. 17.5 - If P = 30 lb, determine the angular acceleration...Ch. 17.5 - If the coefficient of static friction between the...Ch. 17.5 - The uniform bar of mass m and length L is balanced...Ch. 17.5 - Solve Prob.17-106 if the roller is removed and the...Ch. 17.5 - The semicircular disk having a mass of 10 leg is...Ch. 17.5 - The 500-kg concrete culvert has a mean radius of...Ch. 17.5 - The 15-lb disk rests on the 5-lb plate. A cord is...Ch. 17.5 - The semicircular disk having a mass of 10 kg is...Ch. 17.5 - The circular concrete culvert rols with an angular...Ch. 17.5 - The uniform disk of mass m is rotating with an...Ch. 17.5 - The uniform disk of mass m is rotating with an...Ch. 17.5 - A cord is wrapped around each of the two 10-kg...Ch. 17.5 - The disk of mass m and radius r rolls without...Ch. 17.5 - The uniform beam has a weight W. If it is...Ch. 17.5 - The 500-lb beam is supported at A and B when it is...Ch. 17.5 - The solid ball of radius rand mass m rolls without...Ch. 17.5 - By pressing down with the finger at B, a thin ring...Ch. 17.5 - Prob. 1RPCh. 17.5 - Prob. 2RPCh. 17.5 - Prob. 3RPCh. 17.5 - Prob. 4RPCh. 17.5 - Prob. 5RPCh. 17.5 - Prob. 6RPCh. 17.5 - Prob. 7RPCh. 17.5 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The uniform rod of length 4b and mass m is bent into the shape shown. The diameter of the rod is small compared with its length. Determine the moments of inertia of the rod about the three coordinate axes. Use the values m = 7.9 kg and b = 485 mm. Answers: 1xxx = i lyy= i Izz = i kg.m² kg-m² kg-m²arrow_forwardPlease help with the attached problem.arrow_forwardDetermine the moment of inertial about an axis perpendicular to the page and passing through the pin at O. The thin plate has a hole in its center. Its thickness is 50 mm and the material has a density of ρ = 50 kg/m^3arrow_forward
- solve it clearly and correctly. i will ratearrow_forward1. Determine the moment of inertia about an axis perpendicular to the page and passing through the pin at 0. The thin plate has a hole in its center. Its thickness is 50 mm, and the material has a density of p = 60 kg/m³. What is the radius of gyration about this point? 150 mm 1.40 m 1.40 marrow_forwardThe passengers, the ship and the structure have a total mass of 73 Tons, their center of mass in G, and a radius of gyration with respect to B of kB = 3.5 m. Additionally, the 3-ton steel block at point A can be considered as a point of concentrated mass. If the ship rotates freely at 9.3 rad/s when it reaches the lowest point, as shown in the figure, determine the moment of inertia of the system about pivot B (in kgm2) The angular acceleration for the position shown (in rad/s2) is: The vertical reaction at pivot B (in N) is: The horizontal reaction at pivot B (in N) is:arrow_forward
- Determine the moment of inertia of mass with respect to the x' axis that passes through the structure's center of gravity and is parallel to the x axis. The cone has a density of 6000 kg/m3 and the cylinder a density of 8000 kg/m3. Consider H = 83arrow_forwardThe pendulum is made up of a plate weighing 10 lb and a bar weighing 4 lb. Determine the radius of gyration of the pendulum about an axis perpendicular to the page through point O. 1 pie -1 pie 3 pies (Hibbeler 17-16) -2 pies-arrow_forwardThe molded plastic block has a density of 1300 kg/m³. Calculate its moment of inertia about the y-y axis. What percentage error e is introduced by using the approximate relation 1/3 ml² for lxx? Answers: lyy e = = 200 y 495 200 Dimensions in millimeters textes kg m² % 60 60arrow_forward
- Formulas Moments of Inertia x= [y²d ly = fx²dA Theorem of Parallel Axis Ixr = 1 + d² A * axis going through the centroid x' axis parallel to x going through the point of interest d minimal distance (perpendicular) between x and x' ly₁ = 15+d²A ỹ axis going through the centroid y' axis parallel to y going through the point of interest d minimal distance (perpendicular) between y and y' Composite Bodies 1=Σ 4 All the moments of inertia should be about the same axis. Radius of Gyration k=arrow_forwardVerify that the radius of gyration for a circle of diameter d with respect to a centroidal axis is r = d/ 4. 8-2arrow_forwardDetermine the mass moment of inertia and radius of gyration of the figure shown about the x, y and z axis. The materials weighs 30kN/m³. 0.60m 0.9m 0.30m 0.10 '0.05m 0.50m 0.45m 0.10m 0.20 0.20 0.20arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license