Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17.3, Problem 37P
The 150-kg uniform crate rests on the 10-kg cart. Determine the maximum force P that can be applied to the handle without causing the crate to tip on the cart. Slipping does not occur.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The two 200-N blocks are pushed apart by the 15 degrees wedge of negligible weight. The angle of static friction is 10 degrees at all contact surfaces. Determine the force P required to start the blocks moving.
Q4) Determine whether the 90-kg man can move the uniform box has a mass
140-kg
and show if the box will slip or tip. If the coefficient of static fraction between man'
shoes and the floor is 0.5 and between the box and the floor is 0.2. Assume the man
only exerts a horizontal force on the box.
Determine the maximum downward force Pmax that can be applied to wedge A that will keep the assembly
in equilibrium. Based on the value of the force in link BC, determine whether block C will slip or tip first.
At Pmax, what are the frictional forces between wedge A and block B, fAB, and between wedge A and wall
D, SAD? The weight of block C is 192 N while that of the wedge is negligible.
Draw the FBDs of wedge A, block B, and block C. Label correctly all the forces (especially normal and
frictional forces with proper subscripts) and indicate the direction of the impending motion next to each
FBD. Note that the weight of block B, though not negligible, is not necessary in the computation.
W
HAD 0.27
D
P
A
B
60°
HAB= 0.14
|sg =0
E
C
1 m
HCF = 0.375
F
R
2.4 m
3.2 m
Chapter 17 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 17.1 - Determine the moment of inertia Iy for the slender...Ch. 17.1 - The solid cylinder has an outer radius R1 height...Ch. 17.1 - Determine the moment of inertia of the thin ring...Ch. 17.1 - The paraboloid is formed by revolving the shaded...Ch. 17.1 - Determine the radius of gyration kr of the body....Ch. 17.1 - The sphere is formed by revolving the shaded area...Ch. 17.1 - The frustum is formed by rotating the shaded area...Ch. 17.1 - Prob. 8PCh. 17.1 - Prob. 9PCh. 17.1 - The pendulum consists of a 4-kg circular plate and...
Ch. 17.1 - The assembly is made of the slender rods that have...Ch. 17.1 - Prob. 12PCh. 17.1 - The wheel consists of a thin ring having a mass of...Ch. 17.1 - If the large ring, small ring and each of the...Ch. 17.1 - Determine the moment of inertia about an axis...Ch. 17.1 - Prob. 16PCh. 17.1 - Determine the location y of the center of mass G...Ch. 17.1 - Prob. 18PCh. 17.1 - Prob. 19PCh. 17.1 - Determine the moment of inertia of the wheel about...Ch. 17.1 - The pendulum consists of the 3-kg slender rod and...Ch. 17.1 - Prob. 22PCh. 17.1 - Determine the moment of inertia of the overhung...Ch. 17.3 - Draw the free-body and kinetic diagrams of the...Ch. 17.3 - Prob. 2PPCh. 17.3 - Prob. 1FPCh. 17.3 - Prob. 2FPCh. 17.3 - Prob. 3FPCh. 17.3 - Prob. 4FPCh. 17.3 - At the instant shown both rods of negligible mass...Ch. 17.3 - Prob. 6FPCh. 17.3 - The door has a weight of 200 lb and a center of...Ch. 17.3 - The door has a weight or 200 lb and a center of...Ch. 17.3 - The jet aircraft has a total mass of 22 Mg and a...Ch. 17.3 - The sports car has a weight of 4500 lb and center...Ch. 17.3 - The assembly has a mass of 8 Mg and is hoisted...Ch. 17.3 - The assembly has a mass of 4 Mg and is hoisted...Ch. 17.3 - The uniform girder AB has a mass of 8 Mg....Ch. 17.3 - A car having a weight of 4000 lb begins to skid...Ch. 17.3 - A force of P = 300 N is applied to the 60-kg cart....Ch. 17.3 - Determine the largest force P that can be applied...Ch. 17.3 - The trailer with its load has a mass of 150-kg and...Ch. 17.3 - The desk has a weight of 75 lb and a center of...Ch. 17.3 - The desk has a weight of 75 lb and a center of...Ch. 17.3 - The 150-kg uniform crate rests on the 10-kg cart....Ch. 17.3 - The 150-kg uniform crate rests on the 10-kg cart....Ch. 17.3 - The bar has a weight per length w and is supported...Ch. 17.3 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17.3 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17.3 - The uniform crate has a mass of 50 kg and rests on...Ch. 17.3 - Determine the acceleration of the 150-lb cabinet...Ch. 17.3 - Prob. 44PCh. 17.3 - Prob. 45PCh. 17.3 - Prob. 46PCh. 17.3 - Prob. 47PCh. 17.3 - The snowmobile has a weight of 250 lb, centered at...Ch. 17.3 - If the carts mass is 30 kg and it is subjected to...Ch. 17.3 - Prob. 50PCh. 17.3 - The pipe has a mass of 800 kg and is being towed...Ch. 17.3 - The pipe has a mass of 800 kg and is being towed...Ch. 17.3 - Prob. 53PCh. 17.3 - Prob. 54PCh. 17.3 - Prob. 55PCh. 17.3 - Prob. 56PCh. 17.4 - The 100-kg wheel has a radius of gyration about...Ch. 17.4 - Prob. 8FPCh. 17.4 - Prob. 9FPCh. 17.4 - Prob. 10FPCh. 17.4 - Prob. 11FPCh. 17.4 - Prob. 12FPCh. 17.4 - The 10-kg wheel has a radius of gyration kA = 200...Ch. 17.4 - The uniform 24-kg plate is released from rest at...Ch. 17.4 - The uniform slender rod has a mass m. If it is...Ch. 17.4 - The tent rod has a mass of 2 kg/m. If it is...Ch. 17.4 - If a horizontal force of P = 100 N is applied to...Ch. 17.4 - The 10-lb bar is pinned at its center O and...Ch. 17.4 - The 10-lb bar is pinned at its center O and...Ch. 17.4 - A cord is wrapped around the outer surface of the...Ch. 17.4 - Disk A has a weight of 5 lb and disk B has a...Ch. 17.4 - Prob. 66PCh. 17.4 - If the cord at B suddenly fails, determine the...Ch. 17.4 - Prob. 68PCh. 17.4 - The 20-kg roll of paper has a radius of gyration...Ch. 17.4 - The 20-kg roll of paper has a radius of gyration...Ch. 17.4 - The reel of cable has a mass of 400 kg and a...Ch. 17.4 - Prob. 72PCh. 17.4 - Cable is unwound from a spool supported on small...Ch. 17.4 - The 5-kg cylinder is initially at rest when it is...Ch. 17.4 - Prob. 75PCh. 17.4 - Prob. 76PCh. 17.4 - Disk D turns with a constant clockwise angular...Ch. 17.4 - Prob. 78PCh. 17.4 - Prob. 79PCh. 17.4 - Prob. 80PCh. 17.4 - Prob. 81PCh. 17.4 - Prob. 82PCh. 17.4 - Prob. 83PCh. 17.4 - Prob. 84PCh. 17.4 - Prob. 85PCh. 17.4 - Prob. 86PCh. 17.4 - Prob. 87PCh. 17.4 - The 100-kg pendulum has a center of mass at G and...Ch. 17.5 - The Catherine wheel is a firework that consists of...Ch. 17.5 - The uniform 60-kg slender bar is initially at rest...Ch. 17.5 - Prob. 14FPCh. 17.5 - Prob. 15FPCh. 17.5 - The 20- kg sphere rolls down the inclined plane...Ch. 17.5 - The 200-kg spool has a radius of gyration about...Ch. 17.5 - The 12-kg slender rod is pinned to a small roller...Ch. 17.5 - If the disk in Fig. 17-19 rolls without slipping,...Ch. 17.5 - The 20-kg punching bag has a radius of gyration...Ch. 17.5 - The uniform 150-lb beam is initially at rest when...Ch. 17.5 - The tire has a weight of 30 lb and a radius of...Ch. 17.5 - The tire has a weight of 30 lb and a radius of...Ch. 17.5 - The spool has a mass of 100 kg and a radius of...Ch. 17.5 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17.5 - The spool has a mass of 100 kg and a radius of...Ch. 17.5 - The 12-kg uniform bar is supported by a roller at...Ch. 17.5 - A force of F= 10 N is applied to the 10-kg ring as...Ch. 17.5 - If the coefficient of static friction at C is s =...Ch. 17.5 - The 25-lb slender rod has a length of 6 ft. Using...Ch. 17.5 - The 15-lb circular plate is suspended from a pin...Ch. 17.5 - If P = 30 lb, determine the angular acceleration...Ch. 17.5 - If the coefficient of static friction between the...Ch. 17.5 - The uniform bar of mass m and length L is balanced...Ch. 17.5 - Solve Prob.17-106 if the roller is removed and the...Ch. 17.5 - The semicircular disk having a mass of 10 leg is...Ch. 17.5 - The 500-kg concrete culvert has a mean radius of...Ch. 17.5 - The 15-lb disk rests on the 5-lb plate. A cord is...Ch. 17.5 - The semicircular disk having a mass of 10 kg is...Ch. 17.5 - The circular concrete culvert rols with an angular...Ch. 17.5 - The uniform disk of mass m is rotating with an...Ch. 17.5 - The uniform disk of mass m is rotating with an...Ch. 17.5 - A cord is wrapped around each of the two 10-kg...Ch. 17.5 - The disk of mass m and radius r rolls without...Ch. 17.5 - The uniform beam has a weight W. If it is...Ch. 17.5 - The 500-lb beam is supported at A and B when it is...Ch. 17.5 - The solid ball of radius rand mass m rolls without...Ch. 17.5 - By pressing down with the finger at B, a thin ring...Ch. 17.5 - Prob. 1RPCh. 17.5 - Prob. 2RPCh. 17.5 - Prob. 3RPCh. 17.5 - Prob. 4RPCh. 17.5 - Prob. 5RPCh. 17.5 - Prob. 6RPCh. 17.5 - Prob. 7RPCh. 17.5 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 3600-lb car with rear Wheel drive is attempting to tow the 4500-lb crate. The center of gravity of the car is at G, and the coefficients of static friction are 0.6 at B and 0.2 at C. Determine if the crate will slide.arrow_forwardThe 40-lb spool is suspended from the hanger GA and rests against a vertical wall. The center of gravity of the spool is at G and the weight of the hanger is negligible. The wire wound around the hub of the spool is extracted by pulling its end with the force P. If the coefficient of static friction between the spool and the wall is 0.25, determine the smallest P that will extract the wire.arrow_forwardThe man pushes the 120-lb homogeneous crate with the horizontal force P. Determine the largest distance h for which the crate will slide without tipping.arrow_forward
- The 320-lb homogeneous spool is placed on the inclined surface. Determine the vertical force P that is required to keep the spool in the position shown. Assume that there is enough friction to prevent slipping at A.arrow_forwardThe mass of the unbalanced disk is m, and its center of gravity is located at G. If the coefficient of static friction is 0.2 between the cylinder and the inclined surface, determine whether the cylinder can be at rest in the position shown. Note that the string AB is parallel to the incline.arrow_forwardQ1: The tractor has a weight of 4500 lb with center of gravity at G. The driving traction is developed at the rear wheels B, while the front wheels at A are free to roll. If the Q2: The mine car and its contents have a total mass of 9 Mg and a center of gravity at G. If the coefficient of static friction between the wheels and the tracks is u, = 0.4 when the wheels are locked, find the normal force acting on the coefficient of static friction between the wheels at B and the ground is u, = 0.5, determine if it is possible to pull at P = 1350 lb without causing the wheels at B to slip or the front wheels at A to lift off the ground. front wheels at B and the rear wheels at A when the brakes at both A and B are locked. Does the car move? 10 kN 0.9 m G 0.15 m 3.5 ft 1.25 ft 0.6 m- 4 ft -1.5 m- 2.5 ftarrow_forward
- Determine the maximum downward force Pmax that can be applied to wedge A that will keep the assembly in equilibrium. Based on the value of the force in link BC, determine whether block C will slip or tip first. At Pmax, what are the frictional forces between wedge A and block B, fAB, and between wedge A and wall D, fAD? The weight of block C is 192 N while that of the wedge is negligible. Draw the FBDs of wedge A, block B, and block C. Label correctly all the forces (especially normal and frictional forces with proper subscripts) and indicate the direction of the impending motion next to each FBD. Note that the weight of block B, though not negligible, is not necessary in the computation. D HAD 0.27- P A B 60° HAB <= 0.14 HBE E C 1 m HCF = 0.375 F R 2.4 m 3.2 marrow_forwardQ3. Determine the equilibrium values of 0 and the stability of equilibrium at each position for the unbalanced wheel on the 10° incline. Static friction is sufficient to prevent slipping. The mass center is at G. O C G 10⁰ r = 100 mm F = 60 mm Aarrow_forwardWhen the 0.05-kg body is in the position shown, the linear spring is stretched 10 mm. Determine the force P required to break contact at C. Complete so lutions for (a) including the effects of the weight and (b) neglecting the weight.arrow_forward
- Weight of the refrigerator is 880 N. The coefficient of static friction is 0.22 for all surfaces. When the force F is removed the system is not in static equilibrium. Determine the force F to hold the wedge in position. Draw free body diagram of the wedge!! 18°arrow_forward5. Determine the distances to which the 70 kg painter can climb without causing the 4 m ladder to slip at its lower end A. The top of the 12 kg ladder has a small roller and at the ground the coefficient of static friction is 0.2. The center of mass of the painter is directly above herfeet. B 1.2 marrow_forward1. The crate is being pulled by the man as shown. Given that thecoefficient of the horizontal surface and the 750-lb crate is 0.35,find the pulling force on the rope the man should apply to putthe crate in impending motionF =2. Determine the weight of block B for the 250N block A not to slidedown in the inclined plane. Given that the coefficient of staticfriction in the 45° inclined plane is 0.25 and in the 30° inclinedplane is 0.3. (Assume frictionless pulley)WB =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY