
Concept explainers
Each of the gears A and B has a mass of 10 kg and a radius of gyration of 190 mm, while gear C has a mass of 2.5 kg and a radius of gyration of 80 mm. If a couple M of constant magnitude 6 N

(a)
Number of revolutions of gear C.
Answer to Problem 17.11P
Number of revolutions of gear C is
Explanation of Solution
Given information:
Mass of the gear A (mA) = 10kg.
Radius of gyration of the gear A (kA) = 190mm.
Mass of the gear B (mB) = 10kg.
Radius of gyration of the gear B (kB) = 190mm.
Mass of the gear C (mC) = 2.5kg.
Radius of gyration of the gear C (kC) = 80mm.
Initial angular velocity of gear C (NC)1 = 450rpm
Final angular velocity of gear C (NC)1 = 1800rpm
A couple at gear C (M) = 6N-m.
Radius of gear A (rA) = 250mm
Radius of gear B (rB) = 250mm
Radius of gear C (rC) = 100mm
Calculation:
Moment of inertia of gear A
Moment of inertia of gear B
Moment of inertia of gear C
For Initial condition;
Angular velocity of the gear C is 450 rpm,
Gear C mess with Gear A. So angular velocity ration is given as
Gear C mess with gear B
Initial kinetic energy
For final condition; Angular velocity of the gear C is 1800rpm
Gear C mess with Gear A. So angular velocity ration is given as
Gear C mess with gear B
Final kinetic energy
Work done by the gear C
Substitute the value of E1, E2 and W in work energy equation

(b)
Tangential force on gear A.
Answer to Problem 17.11P
Tangential force on gear A is F = 0.0447N.
Explanation of Solution
Given information:
Mass of the gear A (mA) = 10kg.
Radius of gyration of the gear A (kA) = 190mm.
Mass of the gear B (mB) = 10kg.
Radius of gyration of the gear B (kB) = 190mm.
Mass of the gear C (mC) = 2.5kg.
Radius of gyration of the gear C (kC) = 80mm.
Initial angular velocity of gear C (Nc)1 = 450rpm
Final angular velocity of gear C (NC)1 = 1800rpm
A couple at gear C (M) = 6N-m.
Radius of gear A (rA) = 250mm
Radius of gear B (rB) = 250mm
Radius of gear C (rC) = 100mm
Calculation:
Angle of rotation for gear A
Substitute the value of E1, E2 and W in work energy equation for gear A
Want to see more full solutions like this?
Chapter 17 Solutions
Vector Mechanics For Engineers
- a ship 125m long and 17.5m beam floats in seawater of 1.025 t/m3 at a draught of 8m. the waterplane coefficient is 0.83, block coefficient 0.759 and midship section area coefficient 0.98. calculate i) prismatic coefficient ii) TPC iii) change in mean draught if the vessel moves into water of 1.016 t/m3arrow_forwardc. For the given transfer function, find tp, ts, tr, Mp . Plot the resulting step response. G(s) = 40/(s^2 + 4s + 40) handplot only, and solve for eacharrow_forwardA ship of 9000 tonne displacement floats in fresh water of 1.000 t/m3 at a draught 50 mm below the sea water line. The waterplane area is 1650 m2. Calculate the mass of cargo which must be added so that when entering seawater of 1.025 t/m3 it floats at the seawater line.arrow_forward
- A ship of 15000 tonne displacement floats at a draught of 7 metres in water of 1.000t/cub. Metre.It is required to load the maximum amount of oil to give the ship a draught of 7.0 metre in seawater ofdensity 1.025 t/cub.metre. If the waterplane area is 2150 square metre, calculate the massof oil requiredarrow_forwardA ship of 8000 tonne displacement floats in seawater of 1.025 t/m3 and has a TPC of 14. The vessel moves into fresh water of 1.000 t/m3 and loads 300 tonne of oil fuel. Calculate the change in mean draught.arrow_forwardAuto Controls DONT COPY ANSWERS - will report Perform the partial fraction expansion of the following transfer function and find the impulse response: G(s) = (s/2 + 5/3) / (s^2 + 4s + 6) G(s) =( 6s^2 + 50) / (s+3)(s^2 +4)arrow_forward
- I submitted the below question and received the answer i copied into this question as well. Im unsure if it is correct, so looking for a checkover. i am stuck on the part tan-1 (0.05) = 0.04996 radians. Just unsure where the value for the radians came from. Just need to know how they got that answer and how it is correct before moving on to the next part. If any of the below information is wrong, please feel free to give me a new answer or an entire new explanation. An Inclining experiment done on a ship thats 6500 t, a mass of 30t was moved 6.0 m transvesly causing a 30 cm deflection in a 6m pendulum, calculate the transverse meta centre height. Here is the step-by-step explanation: Given: Displacement of the ship (W) = 6500 tonnes = 6500×1000=6,500,000kg Mass moved transversely (w) = 30 tonnes=30×1000=30,000kg The transverse shift of mass (d) = 6.0 meters Pendulum length (L) = 6.0 meters Pendulum deflection (x) = 30 cm = 0.30 meters Step 1: Formula for Metacentric Height…arrow_forwardAnswer the assignment question, expert onlyarrow_forwardA 1 inch rod diameter B 3/4 inch rod diameter C 1/2 inch rod diameter D 3/8 inch rod diameterarrow_forward
- ANSWER ASAP A Solution A is best B Solution B is best C Solution C is best D Solution D is bestarrow_forwardA distillation column with a total condenser and a partial reboiler is separating ethanol andwater at 1.0 atm. Feed is 0.32 mol fraction ethanol and it enters as a saturated liquid at 100mol/s on the optimum plate. The distillate product is a saturated liquid with 80 mol% ethanol.The condenser removes 5615 kW. The bottoms product is 0.05 mol fraction ethanol. AssumeCMO is valid.(a) Find the number of equilibrium stages for this separation. [6 + PR](b) Find how much larger the actual reflux ratio, R, used is than Rmin, i.e. R/Rmin. [3]Note: the heats of vaporization of ethanol and water are λe = 38.58 and λw = 40.645 arrow_forwardA ship of 7000 tonne displacement has a waterplane areaof 1500 m2. In passing from sea water into river water of1005 kg/m3 there is an increase in draught of 10 cm. Find the Idensity of the sea water. i would like to get the above question sloved in detail. ive attached the picture of the answer from the reeds book. just not sure of all the steps theyve used and the formula in which they started with.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





