(a)
Interpretation:
The oxidation number has to be assigned to each atom of the given reaction. The substance that is oxidized, reduced, oxidizing agent and reducing agent have to be stated.
Concept Introduction:
(a)
Answer to Problem 7QRT
The oxidation number of
The oxidation number of
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element in its native form is zero. So, the oxidation number of
In almost all compounds oxidation number of bromine is
Apply charge balance formula in
Therefore, the oxidation number of iron in
The element that gets oxidized reduces the other one and is known as reducing agent. The element that gets reduced oxidizes the other one and is known as oxidizing agent.
In the given reaction, the oxidation number of
The oxidation number of
(b)
Interpretation:
The oxidation number has to be assigned to each atom of the given reaction. The substance that is oxidized, reduced, oxidizing agent and reducing agent have to be stated.
Concept Introduction:
Refer to part (a).
(b)
Answer to Problem 7QRT
The oxidation number of
The oxidation number of
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element in its native form is zero. So, the oxidation number of
In almost all compounds oxidation number of chlorine is
Apply charge balance formula in
Therefore, the oxidation number of aluminium in
The element that gets oxidized reduces the other one and is known as reducing agent. The element that gets reduced oxidizes the other one and is known as oxidizing agent.
In the given reaction, the oxidation number of
The oxidation number of
(c)
Interpretation:
The oxidation number has to be assigned to each atom of the given reaction. The substance that is oxidized, reduced, oxidizing agent and reducing agent have to be stated.
Concept Introduction:
Refer to part (a).
(c)
Answer to Problem 7QRT
The oxidation number of sulfur changes from
The oxidation number of
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element in its native form is zero. So, the oxidation number of
In almost all compounds oxidation number of iodine is
Apply charge balance formula in
Therefore, the oxidation number of sulfur in
Apply charge balance formula in
Therefore, the oxidation number of sulfur in
The element that gets oxidized reduces the other one and is known as reducing agent. The element that gets reduced oxidizes the other one and is known as oxidizing agent.
In the given reaction, the oxidation number of sulfur changes from
The oxidation number of
(d)
Interpretation:
The oxidation number has to be assigned to each atom of the given reaction. The substance that is oxidized, reduced, oxidizing agent and reducing agent have to be stated.
Concept Introduction:
Refer to part (a).
(d)
Answer to Problem 7QRT
The oxidation number of
The oxidation number of
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element carrying charge is equal to that charge. So, the oxidation number of
In almost all compounds oxidation number of hydrogen is
Apply charge balance formula in
Therefore, the oxidation number of oxygen in
Apply charge balance formula in
Therefore, the oxidation number of oxygen in
The element that gets oxidized reduces the other one and is known as reducing agent. The element that gets reduced oxidizes the other one and is known as oxidizing agent.
In the given reaction, the oxidation number of
The oxidation number of
(e)
Interpretation:
The oxidation number has to be assigned to each atom of the given reaction. The substance that is oxidized, reduced, oxidizing agent and reducing agent have to be stated.
Concept Introduction:
Refer to part (a).
(e)
Answer to Problem 7QRT
The oxidation number of
In the given reaction, the oxidation number of
The oxidation number of
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element carrying charge is equal to that charge. So, the oxidation number of
In almost all compounds oxidation number of hydrogen is
Apply charge balance formula in
Therefore, the oxidation number of nitrogen in
Apply charge balance formula in
Therefore, the oxidation number of nitrogen in
Apply charge balance formula in
Therefore, the oxidation number of nitrogen in
Apply charge balance formula in
Therefore, the oxidation number of iron in
The element that gets oxidized reduces the other one and is known as reducing agent. The element that gets reduced oxidizes the other one and is known as oxidizing agent.
In the given reaction, the oxidation number of
In the given reaction, the oxidation number of
The oxidation number of
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry: The Molecular Science
- Nonearrow_forwardWe know that trivalent cations (Cr3+, Mn3+, V3+) with a large difference between octahedral and tetrahedral EECC, form exclusively normal spinels. Bivalent cations (Ni2+ and Cu2+) with high EECC, form inverse spinels. Is this statement correct?arrow_forward(b) Draw the product A that would be formed through the indicated sequence of steps from the given starting material. MeO (1) Br₂, hv (2) NaOEt, EtOH, A (3) BH3:THF (4) H₂O2, HO- B H₂C. CH₂ OH Editarrow_forward
- Small changes in secondary; tertiary primary; secondary primary; tertiary tertiary; secondary protein structure may lead to big changes in protein structures.arrow_forward? The best reagent to achieve the transformation shown is: A Na/NH3 B KCN C HCN CN D H2BCN ய E Transformation is not possible in one steparrow_forwardShow work. don't give Ai generated solution. Don't copy the answer anywherearrow_forward
- συ 3. Determine the rate law equation for a chemical re Mild The following is a chemical reaction: Fron law, 2A+2B C+D+E Run The reaction is found to be first order with respect to A and second order with respect to B. Write the rate law equation for the reaction. (include K, but you can't find the value). 1 How would doubling the concentration of reactant A affect the reaction rate? How would doubling the concentration of reactant B affect the reaction rate? 2 3 K Using yoarrow_forwardHeteropolyacids behave as strong Bronsted acids, compatible with benign oxidants.arrow_forwardygfarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning