
(a)
Interpretation:
The given
Concept Introduction:
The
(a)

Answer to Problem 17QRT
The
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The iron atom and oxygen atom are balanced by putting
The above balanced reaction is multiplied by
Thus, the balanced chemical reaction is shown below.
The oxidation number of iron atom in
The oxidation number of oxygen atom in
(b)
Interpretation:
The given redox reaction is to be balanced and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(b)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The phosphorous atoms and bromine atoms are balanced by putting
The above balanced reaction is multiplied by
Thus, the balanced chemical reaction is shown below.
The oxidation number of phosphorous atom in
The oxidation number of bromine atom in
(c)
Interpretation:
The given redox reaction is to be balanced in acidic medium and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(c)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The oxidation number of cobalt atom in
The oxidation number of oxygen atom in
Therefore, the unbalanced half reactions are shown below.
Oxidation:
Reduction:
The given reaction is to be balanced in acidic medium. Therefore, oxygen atoms are balanced by adding water molecules to the deficient side.
Oxidation:
Reduction:
After balancing oxygen atoms, now hydrogen atoms are balanced by adding protons
Oxidation:
Reduction:
The charge is on both sides is balanced by adding electrons to the more positive side of the half- reaction to equal the less positive side of the half- reaction.
Oxidation:
Reduction:
Since, to make the equal loss and gain of electron, the oxidation reaction is multiplied by two. Therefore, the overall cell reaction is obtained by addition the above two half-cell reactions.
The simplified chemical equation after removing the chemical species of the similar kind is shown below.
Thus, the balanced chemical reaction is shown below.
(d)
Interpretation:
The given redox reaction is to be balanced in acidic medium and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(d)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The oxidation number of chlorine atom in
The oxidation number of manganese atom in
Therefore, the unbalanced half reactions are shown below.
Oxidation:
Reduction:
The given reaction is to be balanced in acidic medium. Therefore, oxygen atoms are balanced by adding water molecules to the deficient side.
Oxidation:
Reduction:
After balancing oxygen atoms, now hydrogen atoms are balanced by adding protons
Oxidation:
Reduction:
The charge is on both sides is balanced by adding electrons to the more positive side of the half- reaction to equal the less positive side of the half- reaction.
Oxidation:
Reduction:
Since the electron gain is not equivalent to electron lost. Thus, multiply the oxidation half reaction by
Oxidation:
Reduction:
Now, there is the equal loss and gain of electron in the above two half-cell reactions. Therefore, the overall cell reaction is get by addition the above two half-cell reactions.
The simplified chemical equation after removing the chemical species of the similar kind is shown below.
Thus, the balanced chemical reaction is shown below.
(e)
Interpretation:
The given redox reaction is to be balanced and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(e)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The oxidation number of zinc atom in
The oxidation number of manganese atom in
Therefore, the unbalanced half reactions are shown below.
Oxidation:
Reduction:
The given reaction is to be balanced in basic medium. Therefore, oxygen atoms are balanced by adding water molecules to the deficient side.
Oxidation:
Reduction:
After balancing oxygen atoms, hydrogen atoms are balanced by adding water molecules
Oxidation:
Reduction:
The charge is on both sides is balanced by adding electrons to the more positive side of the half- reaction to equal the less positive side of the half- reaction.
Oxidation:
Reduction:
Since the electron gain is not equivalent to electron lost. Thus, multiply the oxidation half reaction by
Oxidation:
Reduction:
Now, there is the equal loss and gain of electron in the above two half-cell reactions. Therefore, the overall cell reaction is get by addition the above two half-cell reactions.
The simplified chemical equation after removing the chemical species of the similar kind is shown below.
Thus, the balanced chemical reaction is shown below.
(f)
Interpretation:
The given redox reaction is to be balanced and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(f)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given redox reaction is shown below.
The given redox reaction is already balanced and there are equal numbers of each atom both the sides.
The oxidation number of nitrogen atom in
The oxidation number of oxygen atom in
(g)
Interpretation:
The given redox reaction is to be balanced in basic medium and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(g)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The phosphorous atoms and bromine atoms are balanced by putting
Thus, the balanced chemical reaction is shown below.
The oxidation number of carbon atom in
The oxidation number of oxygen atom in
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry: The Molecular Science
- 5. Consider the compounds shown below as ligands in coordination chemistry and identify their denticity; comment on their ability to form chelate complexes. (6 points) N N A B N N N IN N Carrow_forward1. Use standard reduction potentials to rationalize quantitatively why: (6 points) (a) Al liberates H2 from dilute HCl, but Ag does not; (b) Cl2 liberates Br2 from aqueous KBr solution, but does not liberate C12 from aqueous KCl solution; c) a method of growing Ag crystals is to immerse a zinc foil in an aqueous solution of AgNO3.arrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1 1. PPh3 2. n-BuLi 3 2 • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure. Xarrow_forward
- What is the missing reactant R in this organic reaction? N N H3O+ +R + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure. fmarrow_forwardThe product on the right-hand side of this reaction can be prepared from two organic reactants, under the conditions shown above and below the arrow. Draw 1 and 2 below, in any arrangement you like. 1+2 NaBH3CN H+ N Click and drag to start drawing a structure. 5arrow_forwardAssign this HSQC Spectrum ( please editing clearly on the image)arrow_forward
- (a 4 shows scanning electron microscope (SEM) images of extruded actions of packing bed for two capillary columns of different diameters, al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the same stationary phase, spherical particles with 1-um diameter. A) When the columns were prepared, the figure shows that the column with the larger diameter has more packing irregularities. Explain this observation. B) Predict what affect this should have on band broadening and discuss your prediction using the van Deemter terms. C) Does this figure support your explanations in application question 33? Explain why or why not and make any changes in your answers in light of this figure. Figure 4 SEM images of sections of packed columns for a) 750 and b) 30-um-i.d. capillary columns.³arrow_forwardfcrip = ↓ bandwidth Il temp 32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual components of the van Deemter equation and consequently, band broadening? Increase temperature Longer column Using a gas mobile phase instead of liquid Smaller particle stationary phase Multiple Paths Diffusion Mass Transferarrow_forward34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.). A) Predict whether decreasing the column inner diameters increase or decrease bandwidth. B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or decreasing bandwidth as a function of i.d. and justify your answer. Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles. 35 20 H(um) 큰 20 15 90 0+ 1500 100 75 550 01 02 594 05 μ(cm/sec) 30 15 10arrow_forward
- elow are experimentally determined van Deemter plots of column efficiency, H, vs. flow rate. H is a quantitative measurement of band broadening. The left plot is for a liquid chromatography application and the night is for gas chromatography. Compare and contrast these two plots in terms of the three band broadening mechanisms presented in this activity. How are they similar? How do they differ? Justify your answers.? 0.4 H (mm) 0.2 0.1- 0.3- 0 0.5 H (mm) 8.0 7.0 6.0 5.0 4.0- 3.0 T +++ 1.0 1.5 0 2.0 4.0 Flow Rate, u (cm/s) 6.0 8.0 Flow Rate, u (cm/s)arrow_forwardPredict the products of this organic reaction: + H ZH NaBH3CN H+ n. ? Click and drag to start drawing a structure. Xarrow_forwardWhat is the missing reactant R in this organic reaction? + R H3O+ + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





