
(a)
Interpretation:
The overall balanced equation by adding half reactions for the given reaction has to be stated.
Concept Introduction:
(a)

Answer to Problem 15QRT
The overall equation is as follows.
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element in its native form is zero. So, the oxidation number of
In almost all compounds oxidation number of bromine is
Apply charge balance formula in
Therefore, the oxidation number of iron in
In the given reaction, the oxidation number of
The oxidation number of
The half reaction that represents oxidation is as follows.
The half reaction that represents reduction is as follows.
Multiply equation (2) and add to equation (1) as shown below.
The overall equation obtained is as follows.
(b)
Interpretation:
The overall balanced equation by adding half reactions for the given reaction has to be stated.
Concept Introduction:
Refer to part (a).
(b)

Answer to Problem 15QRT
The overall reaction is shown below.
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element in its native form is zero. So, the oxidation number of
In almost all compounds oxidation number of chlorine is
Apply charge balance formula in
Therefore, the oxidation number of aluminium in
In the given reaction, the oxidation number of
The oxidation number of
The half reaction that represents oxidation is as follows.
The half reaction that represents reduction is as follows.
Multiply equation (4) with three and add to equation (3) as shown below.
Multiply the above equation to get final reaction as follows.
Therefore, the overall reaction is shown below.
(c)
Interpretation:
The overall balanced equation by adding half reactions for the given reaction has to be stated.
Concept Introduction:
Refer to part (a).
(c)

Answer to Problem 15QRT
The overall reaction is shown below.
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element in its native form is zero. So, the oxidation number of
In almost all compounds oxidation number of iodine is
Apply charge balance formula in
Therefore, the oxidation number of sulfur in
Apply charge balance formula in
Therefore, the oxidation number of sulfur in
In the given reaction, the oxidation number of sulfur changes from
The oxidation number of
The half reaction that represents oxidation is as follows.
The half reaction that represents reduction is as follows.
The number of oxygen atoms is balanced by adding four molecules of water on product side as shown below.
In acidic medium, the number of hydrogen atoms is balanced by adding
The charge on reactant side is
The balanced half cell reaction represents reduction is shown below.
Multiply equation (5) with eight and add to equation (6) as shown below.
Therefore, the overall reaction is shown below.
(d)
Interpretation:
The overall balanced equation by adding half reactions for the given reaction has to be stated.
Concept Introduction:
Refer to part (a).
(d)

Answer to Problem 15QRT
The overall reaction is as follows.
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element carrying charge is equal to that charge. So, the oxidation number of
In almost all compounds oxidation number of hydrogen is
Apply charge balance formula in
Therefore, the oxidation number of oxygen in
Apply charge balance formula in
Therefore, the oxidation number of oxygen in
In the given reaction, the oxidation number of
The oxidation number of
The half reaction that represents oxidation is as follows.
The reaction for the conversion of
The number of oxygen atoms is balanced by adding one molecule of water on product side as shown below.
In acidic medium, the number of hydrogen atoms is balanced by adding
The charge on reactant side is
The balanced half cell reaction represents reduction is shown below.
Multiply equation (7) with two and add to equation (8) as shown below.
Therefore, the overall reaction is as follows.
(e)
Interpretation:
The overall balanced equation by adding half reactions for the given reaction has to be stated.
Concept Introduction:
Refer to part (a).
(e)

Answer to Problem 15QRT
The, the overall reaction is as follows.
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element carrying charge is equal to that charge. So, the oxidation number of
In almost all compounds oxidation number of hydrogen is
Apply charge balance formula in
Therefore, the oxidation number of nitrogen in
Apply charge balance formula in
Therefore, the oxidation number of nitrogen in
Apply charge balance formula in
Therefore, the oxidation number of nitrogen in
Apply charge balance formula in
Therefore, the oxidation number of iron in
In the given reaction, the oxidation number of
In the given reaction, the oxidation number of
The oxidation number of
The reaction for the oxidation of
The number of oxygen atoms is balanced by adding four molecules of water on reactant side as shown below.
In acidic medium, the number of hydrogen atoms is balanced by adding
The charge on reactant side is zero and the charge on product side is
The half cell reaction for oxidation of
The reaction for the reduction of
The number of oxygen atoms is balanced by adding two molecules of water on product side as shown below.
In acidic medium, the number of hydrogen atoms is balanced by adding
The charge on reactant side is
The half cell reaction for reduction of
Multiply equation (10) with three and add to equation (10) as shown below.
Therefore, the overall reaction is as follows.
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry: The Molecular Science
- Identify and provide a concise explanation of a specific analytical instrument capable of detecting and quantifying trace compounds in food samples. Emphasise the instrumental capabilities relevant to trace compound analysis in the nominated food. Include the specific application name (eg: identification and quantification of mercury in salmon), outline a brief description of sample preparation procedures, and provide a summary of the obtained results from the analytical process.arrow_forwardIdentify and provide an explanation of what 'Seperation Science' is. Also describe its importance with the respect to the chemical analysis of food. Provide specific examples.arrow_forward5. Propose a Synthesis for the molecule below. You may use any starting materials containing 6 carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not count towards this total, and the starting material can have whatever non-carbon functional groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and III. Your final answer should show each step separately, with intermediates and conditions clearly drawn. H3C CH3arrow_forward
- State the name and condensed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forwardState the name and condensed formula of the isothiazole obtained by reacting acetylacetone and thiosemicarbazide.arrow_forwardProvide the semi-developed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forward
- Given a 1,3-dicarbonyl compound (R1-CO-CH2-CO-R2), indicate the formula of the compound obtaineda) if I add hydroxylamine (NH2OH) to give an isooxazole.b) if I add thiosemicarbazide (NH2-CO-NH-NH2) to give an isothiazole.arrow_forwardAn orange laser has a wavelength of 610 nm. What is the energy of this light?arrow_forwardThe molar absorptivity of a protein in water at 280 nm can be estimated within ~5-10% from its content of the amino acids tyrosine and tryptophan and from the number of disulfide linkages (R-S-S-R) between cysteine residues: Ε280 nm (M-1 cm-1) ≈ 5500 nTrp + 1490 nTyr + 125 nS-S where nTrp is the number of tryptophans, nTyr is the number of tyrosines, and nS-S is the number of disulfide linkages. The protein human serum transferrin has 678 amino acids including 8 tryptophans, 26 tyrosines, and 19 disulfide linkages. The molecular mass of the most dominant for is 79550. Predict the molar absorptivity of transferrin. Predict the absorbance of a solution that’s 1.000 g/L transferrin in a 1.000-cm-pathlength cuvet. Estimate the g/L of a transferrin solution with an absorbance of 1.50 at 280 nm.arrow_forward
- In GC, what order will the following molecules elute from the column? CH3OCH3, CH3CH2OH, C3H8, C4H10arrow_forwardBeer’s Law is A = εbc, where A is absorbance, ε is the molar absorptivity (which is specific to the compound and wavelength in the measurement), and c is concentration. The absorbance of a 2.31 × 10-5 M solution of a compound is 0.822 at a wavelength of 266 nm in a 1.00-cm cell. Calculate the molar absorptivity at 266 nm.arrow_forwardHow to calculate % of unknown solution using line of best fit y=0.1227x + 0.0292 (y=2.244)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning




