
Concept explainers
(a)
Interpretation:
The combustion reaction for one mole of octane has to be stated.
Concept Introduction:
The
(a)

Answer to Problem 17.ACP
The chemical equation for complete combustion reaction of octane is shown below.
Explanation of Solution
The main products produced by the complete combustion of octane are carbon dioxide and water. The chemical equation representing the combustion reaction of octane is shown below.
The chemical reaction shown above illustrates the burning of one mole of the octane in the presence of the oxygen to produce eight moles of carbon dioxide and nine moles of water.
(b)
Interpretation:
The chemical reaction for the hydrogenation process has to be stated. Also the amount of hydrogen gas produced by the combustion of one mole of octane has to be determined.
Concept Introduction:
The chemical reaction which takes place between molecular hydrogen and another compound, in the presence of a catalyst such as nickel, palladium or platinum is termed as hydrogenation reaction. This process is commonly used to reduce the unsaturated compounds.
(b)

Answer to Problem 17.ACP
The chemical equation which represents the first step is shown below.
The chemical equation which represents the second step is shown below.
Seventeen moles of
Explanation of Solution
The steps which include the hydrogenation process are shown below.
The first step is the partial oxidation of the octane which leads to the formation of carbon monoxide and hydrogen.
The chemical equation which represents the first step is shown below.
The second step leads to the production of carbon dioxide and hydrogen gas when carbon monoxide combines with water. The mixture of gas obtained by the combination of carbon dioxide and hydrogen gas is referred to as the shift gas.
The chemical equation which represents the second step is shown below.
Hence the overall reaction will get on addition of chemical equation for first and second step which is shown below.
Thus, the overall reaction so obtained is shown below.
According to the above chemical equation, seventeen moles of
(c)
Interpretation:
The chemical equations are to be combined and have to be shown that the overall reaction is same as that of the combustion of octane.
Concept Introduction:
The zero-emission fuel burned with oxygen is referred to as hydrogen fuel. There are many applications of it as it is used in fuel cells or internal combustion engines. The hydrogen reacts with oxygen and leads to the formation of water and also releases energy as the by product.
(c)

Answer to Problem 17.ACP
The result is same as that for the combustion reaction of octane.
Explanation of Solution
The chemical equation representing the reaction takes place for the hydrogen gas as a fuel is shown below.
The overall chemical equation so obtained in part (b) is shown below.
The chemical equation for the combustion reaction of octane is obtained by addition of reactions mentioned above. Thus, the result obtained is shown below.
Hence, the result so obtained by the addition of above two reactions is the same as the combustion reaction of octane.
(d)
Interpretation:
The Gibbs energy produced in thehydrogen fuel gas reaction and that of the combustion of the octane has to be compared.
Concept Introduction:
The general expression for the calculation of Gibbs free energy for a reaction is shown below.
(d)

Answer to Problem 17.ACP
The Gibbs energy produced in thehydrogen fuel gas reaction is less negative and has smaller magnitude as compared to the combustion of the octane.
Explanation of Solution
The chemical equation representing the combustion reaction of octane is shown below.
The elements which are present in their elemental states have
The standard Gibbs free energy for the formation of water,
The expression for the calculation of Gibbs free energy for the combustion reaction of octane is shown below.
The value of
The value of
The value of
The value of
Substitute the value of
Thus, the energy produced during the combustion of one mole of octane is
The chemical equation for the hydrogen gas shift reaction is shown below.
The elements which are present in their elemental states have
The standard Gibbs free energy for the formation of water,
The expression for the calculation of Gibbs free energy for the hydrogen gas shift reaction is shown below.
The value of
The value of
The value of
Substitute the value of
Thus, the energy produced during the hydrogen gas shift reaction is
Therefore, the amount of the Gibbs energy produced in the hydrogen fuel gas reaction is less negative and has smaller magnitude as compared to that of the combustion of the octane.
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry: The Molecular Science
- scratch paper, and the integrated rate table provided in class. our scratch work for this test. Content attribution 3/40 FEEDBACK QUESTION 3 - 4 POINTS Complete the equation that relates the rate of consumption of H+ and the rate of formation of Br2 for the given reaction. 5Br (aq) + BrO3 (aq) + 6H (aq) →3Br2(aq) + 3H2O(l) • Your answers should be whole numbers or fractions without any decimal places. Provide your answer below: Search 尚 5 fn 40 * 00 99+ 2 9 144 a [arrow_forward(a) Write down the structure of EDTA molecule and show the complex structure with Pb2+ . (b) When do you need to perform back titration? (c) Ni2+ can be analyzed by a back titration using standard Zn2+ at pH 5.5 with xylenol orange indicator. A solution containing 25.00 mL of Ni2+ in dilute HCl is treated with 25.00 mL of 0.05283 M Na2EDTA. The solution is neutralized with NaOH, and the pH is adjusted to 5.5 with acetate buffer. The solution turns yellow when a few drops of indicator are added. Titration with 0.02299 M Zn2+ requires 17.61 mL to reach the red end point. What is the molarity of Ni2+ in the unknown?arrow_forwardA compound has the molecular formula CH40, and shows a strong IR absorption at 2850-3150 cm. The following signals appear in the 'H NMR spectrum: 1.4 ppm (triplet, 6H), 4.0 ppm (quartet, 4H), 6.8 ppm (broad singlet, 4H). Which of the following structures is consistent with these data? Select the single best answer. OCH CH₂ x OCH2CH3 CH₂OCH3 OH CH₂OCH OH CH, OCH₁ CH₂OCH, CH₂OCH HO OH ° CH₂OCH3arrow_forward
- predict the major product while showing me the intermidiate products from each reagent/reagent grouparrow_forwardWhy is it desirable in the method of standard addition to add a small volume of concentrated standard rather than a large volume of dilute standard? An unknown sample of Cu2+ gave an absorbance of 0.262 in an atomic absorption analysis. Then 1.00 mL of solution containing 100.0 ppm (= µg/mL) Cu2+ was mixed with 95.0 mL of unknown, and the mixture was diluted to 100.0 mL in a volumetric flask. The absorbance of the new solution was 0.500. Calculate the concentration of copper ion in the sample.arrow_forwardWhat is the relation between the standard deviation and the precision of a procedure? What is the relation between standard deviation and accuracy? The percentage of an additive in gasoline was measured six times with the following results: 0.13, 0.12, 0.16, 0.17, 0.20, 0.11%. Find the 90% and 99% confidence intervals for the percentage of the additive.arrow_forward
- If you measure a quantity four times and the standard deviation is 1.0% of the average, can you be 90% confident that the true value is within 1.2% of the measured average?arrow_forwardWrite down three most common errors in thermogravimetric analysis. Identify them as systematic or random errors and discuss how you can minimize the errors for better results.arrow_forwarda) A favorable entropy change occurs when ΔS is positive. Does the order of the system increase or decrease when ΔS is positive? (b) A favorable enthalpy change occurs when ΔH is negative. Does the system absorb heat or give off heat when ΔH is negative? (c) Write the relation between ΔG, ΔH, and ΔS. Use the results of parts (a) and (b) to state whether ΔG must be positive or negative for a spontaneous change. For the reaction, ΔG is 59.0 kJ/mol at 298.15 K. Find the value of K for the reaction.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning




