(a)
Interpretation:
The effect on the temperature of the given equilibrium by increasing the yield of ethane needs to be explained.
Concept introduction:
By changing the temperature, the equilibrium shifts to attain the initial equilibrium state.
Answer to Problem 63A
When concentration of ethane or product is increased then the equilibrium state is shifted to the left side or the reactants side to attain the equilibrium state and temperature is also increased.
Explanation of Solution
The given equilibrium reaction is
According to Le Chatelier’s principle, when concentration of ethane or product is increased then the equilibrium state is shifted to the left side or the reactants side to attain the equilibrium state by increasing the temperaturewhich favors an exothermic reaction.
(b)
Interpretation:
The change in the temperature of the system due to decrease in the concentration of ethylene or reactant needs to be explained.
Concept introduction:
By changing the temperature, the equilibrium shifts to attain the initial equilibrium state.
(b)
Answer to Problem 63A
The temperature is decreased when the concentration of reactant is increased then the equilibrium is shift towards the right side with the formation of additional product.
Explanation of Solution
The given equilibrium reaction is as follows:
The temperature is decreased when the concentration of reactants is increased then the equilibrium shifts towards the right side with the formation of additional product.
The given equilibrium reaction is as follows:
The given reaction is an exothermic reaction. So, the equilibrium position shifts to right side by decreasing the temperature because of decreasing the concentration of ethylene.
(c)
Interpretation:
The effect on the temperature by increasing the concentration of hydrogen needs to be explained.
Concept introduction:
By changing the temperature, the equilibrium shifts to attain the initial equilibrium state.
(c)
Answer to Problem 63A
When concentration of hydrogen is increased then the equilibrium sifts to right side with decreasing temperature which favors exothermic reactions.
Explanation of Solution
The given equilibrium reaction is
By increasing the concentration of hydrogen gas, equilibrium shifts to right side with deceasing temperature which favors the exothermic reaction and due to addition of hydrogen concentration additional products are formed.
Chapter 17 Solutions
Glencoe Chemistry: Matter and Change, Student Edition
Additional Science Textbook Solutions
Human Anatomy & Physiology (2nd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry: Structure and Properties (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Campbell Essential Biology (7th Edition)
Anatomy & Physiology (6th Edition)
- 4. Determine the amount in grams of AgCl (s) formed when 2.580 g AgNO3(s) is added to 45.00 mL of a 0.1250 M CrCl3 (aq) (The other product is aqueous chromium (III) nitrate) 5. Determine the amount (in grams) of Cobalt (II) phosphate formed when an aqueous solution of 30.0 ml of 0.450 M Sodium Phosphate is mixed with 20.0 mL of 0.500 M aqueous solution of cobalt (II) nitrate. (The other product is aqueous sodium nitrate)arrow_forward7. Consider the following reaction that describes the dissolution of copper metal in nitric acid: Cu (s) + 4 HNO3 (aq) → Cu(NO3)2 (aq) + 2 H₂O (1) + 2 NO2 (g) How many mL of 3.50 M HNO3 (aq) are required to dissolve 20.00 g Cu?arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Don't used Ai solutionarrow_forward3. An unknown element, X, combines with chlorine to give a substance with the formula XC14. A chlorine analysis of the substance indicates that it contains 83.47% chlorine by mass. What element is X and what is the formula of this compound? (Hint: to identify an element or compound, identify its molar mass. Remember that Molar Mass = (grams A)/(moles A). Solve for each individually and then divide them to find molar mass.)arrow_forward1. When hydrogen sulfide (H2S, MM = 34.08 g/mol) gas is bubbled into a solution of sodium hydroxide (NaOH, 40.00 g/mol), sodium sulfide (Na2S, 78.04 g/mol) and water (18.02 g/mol) are produced according to the balanced chemical equation shown below? H2S 2 NaOH --> Na2S 2 H₂O (a) Assuming the reaction goes to completion, how many grams of sodium sulfide are formed if 2.50g of hydrogen sulfide is bubbled into a solution containing 1.85g of NaOH? (20 pts) (b) Which reactant and how much of it remains after the reaction has been completed? (15 pts) (c) If only 0.400g of sodium sulfide was recovered, what is the percent yield of this reaction (5 pts)arrow_forward
- The organic compound MTBE (methyltertiarybutylether) is used as a fuel additive that allows gasoline to burn more cleanly thus leading to a reduction in pollution. Recently, however, MTBE has been found in the drinking water of a number of communities. As a result several states are phasing out the use of MTBE as a fuel additive. A combustion experiment using 10.00 g of MTBE was found to produce 24.97g of CO2 and 12.26 g of H2O. (a) What is the empirical formula of MTBE assuming it contains C, H, and O only? (b) The molar mass of MTBE was experimentally determined to be 88.1 g/mol. Using this information what is the molecular formula of MTBEarrow_forwardPart 4: Provide a detailed retrosynthetic analysis and a plausible forward synthesis the following molecule. храдо ofarrow_forward3A: Starting with benzocyclobutene, synthesize the naphthalene derivative below.arrow_forward
- 7. The addition of HBr to 2,5-dimethyl-2,4-heptadiene gives the same product, A, at both low and high temperatures. Provide the structure of A and explain the kinetic and thermodynamic product are the same in this reaction. HBr -78°C or 60°C Aarrow_forward3B: Convert the starting material into the chiral epoxytriol below. OH OH = OH OHarrow_forward3D: Convert the aromatic triketone to the 1,3,5-triethylcyclohexane shown below. ہوئےarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY