Concept explainers
(a)
Interpretation:
Oxidation number of
Concept Introduction:
Oxidation number is integer value allotted to every element. It is formal charge occupied by atom if all of its bonds are dissociated heterolytically. Below mentioned are rules to assign oxidation numbers to various elements.
1. Elements present in their free state have zero oxidation number.
2. Oxidation number of hydrogen is generally
3. Oxidation number of oxygen is
4. Metals have positive oxidation numbers.
5. Negative oxidation numbers are assigned to most electronegative element in covalent compounds.
6. Sum of oxidation numbers of different elements in neutral atom is zero.
7. Sum of oxidation numbers of various elements in polyatomic ion is equal to charge present on ion.
(b)
Interpretation:
Oxidation number of
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
Oxidation number of
Concept Introduction:
Refer to part (a).
(d)
Interpretation:
Oxidation number of
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
Foundations of College Chemistry 15e Binder Ready Version + WileyPLUS Registration Card
- . In each of the following reactions, identify which element is oxidized and which is reduced by assigning oxidation states. a.2Br2O3(s)+6Cl2(g)4BCl3(l)+3O2(g)b.GeH4(g)+O2(g)Ge(s)+2H2O(g)c.C2H4(g)+Cl2(g)C2H4Cl2(l)d.O2(g)+2F2(g)2OF2(g)arrow_forwardDetermine the oxidation number of each element in each of the following compounds: (a) HCN (b) OF2 (c) ASCl3arrow_forward. Balance each of the following oxidation-reduction reactions, which take place in acidic solution. a.MnO4(aq)+H2O2(aq)Mn2+(aq)+O2(g)b.BrO3(aq)+Cu+(aq)Br(aq)+Cu2+(aq)c.HNO2(aq)+I(aq)NO(g)+I2(aq)arrow_forward
- Balance each of the following oxidationreduction reactions by nsing the oxidation states method. a. Cl2(g) + Al(s) Al3+(aq) + Cl(aq) b. O2(g) + H2O(l) + Ph(s) Ph(OH)2(s) c. H+(aq) + MnO4(aq) + Fe2+(aq) Mn2+(aq) + Fe3+(aq) + H2O(l)arrow_forwardBalance each of the following oxidationreduction reactions by using the oxidation states method. a. C2H6(g) + O2(g) CO2(g) + H2O(g) b. Mg(s) + HCl(aq) Mg2+(aq) + Cl(aq) + H2(g) c. Co3+ (aq) + Ni(s) Co2+(aq) + Ni2+(aq) d. Zn(s) + H2SO4(aq) ZnSO4(aq) + H2(g)arrow_forwardFour metals, A, B, C, and D, exhibit the following properties: (a) Only A and C react with 1.0 M hydrochloric acid to give H2(g). (b) When C is added to solutions of the ions of the other metals, metallic B, D, and A are formed. (c) Metal D reduces Bn+ to give metallic B and Dn+. Based on this information, arrange the four metals in order of increasing ability to act as reducing agents.arrow_forward
- Balance each of the following oxidationreduction reactions by using the oxidation states method. a.C2H4(g) + O2(g) CO3(g) + H2O(g) b. Mg(s) + HCl(aq) Mg2+(aq) + Cl(aq) + H2(g) c.Co3+(aq) + Ni(s) Co2+(aq) + Ni2+(aq) d.Zn(s) + H2SO4(aq) ZnSo4(aq) + H2(g)arrow_forwardAn aqueous solution of KBr is placed in a beaker with two inert platinum electrodes. When the cell is attached to an external source of electrical energy, electrolysis occurs. (a) Hydrogen gas and hydroxide ion form at the cathode. Write an equation for the half-reaction that occurs at this electrode. (b) Bromine is the primary product at the anode. Write an equation for its formation.arrow_forwardChromium has been investigated as a coating for steel cans. The thickness of the chromium film is determined by dissolving a sample of a can in acid and oxidizing the resulting Cr3+ to Cr2O72 with the peroxydisulfate ion: S2O82(aq) + Cr3+(aq) + H2O(l) Cr2O72(aq) + SO42(aq) + H+(aq) (Unbalanced) After removal of unreacted S2O82 an excess of ferrous ammonium sulfate [Fe(NH4)2(SO4)26H2O] is added, reacting with Cr2O72 produced from the first reaction. The unreacted Fe2+ from the excess ferrous ammonium sulfate is titrated with a separate K2Cr2O7 solution. The reaction is: H+(aq) + Fe2+(aq) + Cr2O72(aq) Fe3+(aq) + Cr3+(aq) + H2O(l) (Unbalanced) a. Write balanced chemical equations for the two reactions. b. In one analysis, a 40.0-cm2 sample of a chromium-plated can was treated according to this procedure. After dissolution and removal of excess S2O82, 3.000 g of Fe(NH4)2(SO4)26H2O was added. It took 8.58 mL of 0.0520 M K2Cr2O7 solution to completely react with the excess Fe2+. Calculate the thickness of the chromium film on the can. (The density of chromium is 7.19 g/cm3)arrow_forward
- . Balance each of the following half-reactions. a.I(aq)I2(s)b.O2(g)O2(s)c.P4(s)P3(s)d.Cl2(g)Cl(aq)arrow_forwardWhat is the oxidation number of sodium in the following reaction? Pb(NO3)2(aq)+2NaI(aq)PbI2(s)+2NaNO3(aq) a. +1 b. +2 c. 1 d. 2arrow_forwardThe Toliens test for the presence of reducing sugars (say, in a urine sample) involves treating the sample with silver ions in aqueous ammonia. The result is the formation of a silver mirror within the reaction vessel if a reducing sugar is present. Using glucose, C6H12O6, to illustrate this test, the oxidation-reduction reaction occurring is C6H12O6 (aq) + 2 Ag+(aq) + 2OH(aq) C6H12O7(aq) + 2 Ag(s) + H2O() What has been oxidized, and what has been reduced? What is the oxidizing agent, and what is the reducing agent? Tolien's test. The reaction of silver ions with a sugar such as glucose produces metallic silver. (a) The set-up for the reaction. (b) The silvered test tubearrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning