
Concept explainers
(a)
Interpretation:
Atom or ion oxidized in reactions below has to be determined.
Concept Introduction:
Oxidation number is integer value allotted to every element. It is formal charge occupied by atom if all of its bonds are dissociated heterolytically. Below mentioned are rules to assign oxidation numbers to various elements.
1. Elements present in their free state have zero oxidation number.
2. Oxidation number of hydrogen is generally
3. Oxidation number of oxygen is
4. Metals have positive oxidation numbers.
5. Negative oxidation numbers are assigned to most electronegative element in covalent compounds.
6. Sum of oxidation numbers of different elements in neutral atom is zero.
7. Sum of oxidation numbers of various elements in polyatomic ion is equal to charge present on ion.
(a)

Explanation of Solution
Given reaction (1) is as follows:
Oxidation number of each atom in reaction (1) is as follows:
Since oxidation state of carbon changes from
Given reaction (2) is as follows:
Oxidation number of each atom in reaction (2) is as follows:
Since oxidation state of sulfur changes from
Given reaction (3) is as follows:
Oxidation number of each atom in reaction (3) is as follows:
Since oxidation state of nitrogen changes from
Given reaction (4) is as follows:
Oxidation number of each atom in reaction (4) is as follows:
Since oxidation state of sulfur changes from
Given reaction (5) is as follows:
Oxidation number of each atom in reaction (5) is as follows:
Since oxidation state of oxygen changes from
(b)
Interpretation:
Atom or ion reduced in reactions below has to be determined.
Concept Introduction:
Refer to part (a).
(b)

Explanation of Solution
Given reaction (1) is as follows:
Oxidation number of each atom in reaction (1) is as follows:
Since oxidation state of oxygen changes from 0 to
Given reaction (2) is as follows:
Oxidation number of each atom in reaction (2) is as follows:
Since oxidation state of nitrogen changes from
Given reaction (3) is as follows:
Oxidation number of each atom in reaction (3) is as follows:
Since oxidation state of copper changes from
Given reaction (4) is as follows:
Oxidation number of each atom in reaction (4) is as follows:
Since oxidation state of oxygen changes from
Given reaction (5) is as follows:
Oxidation number of each atom in reaction (5) is as follows:
Since oxidation state of oxygen changes from
(c)
Interpretation:
Oxidizing agent in reactions below has to be determined.
Concept Introduction:
Refer to part (a).
(c)

Explanation of Solution
Given reaction (1) is as follows:
Oxidation number of each atom in reaction (1) is as follows:
Since oxidation state of oxygen changes from 0 to
Given reaction (2) is as follows:
Oxidation number of each atom in reaction (2) is as follows:
Since oxidation state of nitrogen changes from
Given reaction (3) is as follows:
Oxidation number of each atom in reaction (3) is as follows:
Since oxidation state of copper changes from
Given reaction (4) is as follows:
Oxidation number of each atom in reaction (4) is as follows:
Since oxidation state of oxygen changes from
Given reaction (5) is as follows:
Oxidation number of each atom in reaction (5) is as follows:
Since oxidation state of oxygen changes from
(d)
Interpretation:
Reducing agent in reactions below has to be determined.
Concept Introduction:
Refer to part (a).
(d)

Explanation of Solution
Given reaction (1) is as follows:
Oxidation number of each atom in reaction (1) is as follows:
Since oxidation state of carbon changes from
Given reaction (2) is as follows:
Oxidation number of each atom in reaction (2) is as follows:
Since oxidation state of sulfur changes from
Given reaction (3) is as follows:
Oxidation number of each atom in reaction (3) is as follows:
Since oxidation state of nitrogen changes from
Given reaction (4) is as follows:
Oxidation number of each atom in reaction (4) is as follows:
Since oxidation state of sulfur changes from
Given reaction (5) is as follows:
Oxidation number of each atom in reaction (5) is as follows:
Since oxidation state of oxygen changes from
(e)
Interpretation:
Oxidation state change in oxidizing agent in reactions below has to be determined.
Concept Introduction:
Refer to part (a).
(e)

Explanation of Solution
Given reaction (1) is as follows:
Oxidation number of each atom in reaction (1) is as follows:
Since oxidation state of oxygen changes from 0 to
Hence oxidation state of oxidizing agent in this reaction changes from 0 to
Given reaction (2) is as follows:
Oxidation number of each atom in reaction (2) is as follows:
Since oxidation state of nitrogen changes from
Hence oxidation state of oxidizing agent in this reaction changes from
Given reaction (3) is as follows:
Oxidation number of each atom in reaction (3) is as follows:
Since oxidation state of copper changes from
Hence oxidation state of oxidizing agent in this reaction changes from
Given reaction (4) is as follows:
Oxidation number of each atom in reaction (4) is as follows:
Since oxidation state of oxygen changes from
Hence oxidation state of oxidizing agent in this reaction changes from
Given reaction (5) is as follows:
Oxidation number of each atom in reaction (5) is as follows:
Since oxidation state of oxygen changes from
Hence oxidation state of oxidizing agent in this reaction changes from
(f)
Interpretation:
Oxidation state change in reducing agent in reactions below has to be determined.
Concept Introduction:
Refer to part (a).
(f)

Explanation of Solution
Given reaction (1) is as follows:
Oxidation number of each atom in reaction (1) is as follows:
Since oxidation state of carbon changes from
Hence oxidation state of reducing agent in this reaction changes from
Given reaction (2) is as follows:
Oxidation number of each atom in reaction (2) is as follows:
Since oxidation state of sulfur changes from
Hence oxidation state of reducing agent in this reaction changes from
Given reaction (3) is as follows:
Oxidation number of each atom in reaction (3) is as follows:
Since oxidation state of nitrogen changes from
Hence oxidation state of reducing agent in this reaction changes from
Given reaction (4) is as follows:
Oxidation number of each atom in reaction (4) is as follows:
Since oxidation state of sulfur changes from
Hence oxidation state of reducing agent in this reaction changes from
Given reaction (5) is as follows:
Oxidation number of each atom in reaction (5) is as follows:
Since oxidation state of oxygen changes from
Hence oxidation state of reducing agent in this reaction changes from
Want to see more full solutions like this?
Chapter 17 Solutions
Foundations of College Chemistry 15e Binder Ready Version + WileyPLUS Registration Card
- Calculate the pH and the pOH of each of the following solutions at 25 °C for which the substances ionize completely: (a) 0.000259 M HClO4arrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardDetermine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. NaN₃arrow_forward
- A. Draw the structure of each of the following alcohols. Then draw and name the product you would expect to produce by the oxidation of each. a. 4-Methyl-2-heptanol b. 3,4-Dimethyl-1-pentanol c. 4-Ethyl-2-heptanol d. 5,7-Dichloro-3-heptanolarrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardCan I please get help with this.arrow_forward
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. N₂H₅ClO₄arrow_forwardPlease help me with identifying these.arrow_forwardCan I please get help with this?arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




