Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Videos

Question
Book Icon
Chapter 17, Problem 45P

(a)

To determine

The, numerical value of R0 and B .

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The temperature dependence of resistance of a thermistor is R=R0eB/T . The value of R is 7360Ω at ice point and 153Ω at steam point.

Formula used:

Write the expression of resistance for thermistor.

  R=R0eB/T   ........ (1)

Here, R is the resistance of the thermistor, R0 is a empirical constant, B is a empirical constant and T is the operating temperature of the thermistor.

Calculation:

Substitute 7360Ω for R and 273K for T in the expression (1).

  7360Ω=R0eB/273K   ........ (2)

Substitute 153Ω for R and 373K for T in the expression (1).

  153Ω=R0eB/373K   ........ (3)

Divide expression (2) by (3).

  7360Ω153Ω=e(B/273K)(B/373K)48.1Ω=e(B/273K)(B/373K)

Take logarithm of the above expression.

  ln(48.1)=B(12731373)K-1

Simplify the above expression for B .

  B=ln(48.1)(12731373)K-1=3.95×103K

Rearrange the expression (2).

  R0=7360ΩeB/273K

Substitute 3.95×103K for B in the above expression.

  R0=7360Ωe(3.95×103K)/273K=3.9×103Ω

Conclusion:

Thus, the value of B is 3.95×103K and the value of R0 is 3.9×103Ω .

(b)

To determine

The, resistance of the thermistor at 98.6°F

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The temperature dependence of resistance of a thermistor is R=R0eB/T . The value of R is 7360Ω at ice point and 153Ω at steam point.

Formula used:

Write the expression of resistance for thermistor.

  R=R0eB/T

Here, R is the resistance of the thermistor, R0 is a empirical constant, B is a empirical constant and T is the operating temperature of the thermistor.

Calculation:

Substitute 3.95×103K for B , 3.9×103Ω for R0 and 310K for T in the above equation.

  R=(3.9×103Ω)e(3.95×103K)/310K=1.32×103Ω=(1.32×103Ω(1103Ω))=1.32

Conclusion:

Thus, the value of resistance at 98.6°F is 1.32 .

(c)

To determine

The, rate of change of temperature at ice point and steam point.

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The temperature dependence of resistance of a thermistor is R=R0eB/T . The value of R is 7360Ω at ice point and 153Ω at steam point.

Formula used:

Write the expression of resistance for thermistor.

  R=R0eB/T

Differentiate both sides of the above expression with respect to T .

  dRdT=ddT(R0eB/T)=RBT2   ........ (4)

For ice point.

Substitute 7360Ω for R , 3.95×103K for B and 273K for T in the expression (4).

  (dRdT)ice-point=(7360Ω)(3.95×103K)273K=389Ω/K

For steam point.

Substitute 153Ω for R , 3.95×103K for B and 373K for T in the expression (4).

  (dRdT)steam-point=(153Ω)(3.95×103K)373K=4.34Ω/K

Conclusion:

Thus, the rate of change of resistance at ice point is 389Ω/K and at the steam point is 4.34Ω/K .

(d)

To determine

The, temperature sensitivity of the thermistor.

(d)

Expert Solution
Check Mark

Explanation of Solution

Given:

The temperature dependence of resistance of a thermistor is R=R0eB/T . The value of R is 7360Ω at ice point and 153Ω at steam point.

Introduction:

The resistance of a thermistor is a function of temperature. The resistance of a thermistor changes with respect to the temperature.

A thermistor is more sensitive at lower temperature.

Write the expression of resistance of a thermistor as a function of temperature.

  R=R0eB/T

As the temperature decreases the thermistor becomes more sensitive.

Conclusion:

Thus, a thermistor becomes more sensitive at lower temperature.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You want to fabricate a soft microfluidic chip like the one below. How would you go about fabricating this chip knowing that you are targeting a channel with a square cross-sectional profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the process to form the inlet and outlet. Square Cross Section
1. What are the key steps involved in the fabrication of a semiconductor device. 2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer with the pattern below. Describe the process you would use. High Aspect Ratio Trenches Undoped Si Wafer P-doped Si 3. You would like to deposit material within a high aspect ratio trench. What approach would you use and why? 4. A person is setting up a small clean room space to carry out an outreach activity to educate high school students about patterning using photolithography. They obtained a positive photoresist, a used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full resist gets developed, and they are unable to transfer the pattern onto the resist. Help them troubleshoot and find out why pattern of transfer has not been successful. 5. You are given a composite…
Two complex values are  z1=8 + 8i,  z2=15 + 7 i.  z1∗  and  z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗   Please show all steps

Chapter 17 Solutions

Physics for Scientists and Engineers

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY