Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 17, Problem 27P

(a)

To determine

The rms speed of H2.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The escape speed of gas molecules is 60km/s.

The temperature at the Jupiter surface is 150°C.

Formula used:

Write the expression for the rms speed of the molecule.

  vrms=3RTM ........ (1)

Here, vrms is the root mean square value o the molecule, R is the gas constant, T is the temperature and M is the molecular mass of the molecule.

Write the expression for the relation between Celsius and kelvin.

  T(K)=T(°C)+273.15 ........ (2)

Substitute 150°C in equation (2).

  T(K)=150°C+273.15T(K)=123.15K

Calculation:

Substitute 8.314J/molK for R , 123.15K for T and 2×103kg/mol for M in equation (1).

  vrms= 3( 8.314 J mol K )( 123.15K ) 2× 10 3 kg/ mol vrms=1.24km/s

Conclusion:

The rms speed of the H2 molecule is 1.24km/s

(b)

To determine

The root mean square speed of O2.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The escape speed of gas molecules is 60km/s.

The temperature at the Jupiter surface is 150°C.

Formula used:

Write the expression for the rms speed of the molecule.

  vrms=3RTM

Here, vrms is the root mean square value of the molecule, R is the gas constant, T is the temperature and M is the molecular mass of the molecule.

Calculation:

Substitute 8.314J/molK for R , 123.15K for T and 32×103kg/mol for M in equation (1).

  vrms= 3( 8.314J/ molK )( 123.15K ) 32× 10 3 kg/ mol vrms=310m/s

Conclusion:

The root mean square speed of oxygen molecule is 310m/s .

(c)

To determine

The root mean square speed of CO2 .

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The escape speed of gas molecules is 60km/s.

The temperature at the Jupiter surface is 150°C.

Formula used:

Write the expression for the rms speed of the molecule.

  vrms=3RTM

Here, vrms is the root mean square value of the molecule, R is the gas constant, T is the temperature and M is the molecular mass of the molecule.

Calculation:

Substitute 8.314J/molK for R , 123.15K for T and 44×103kg/mol for M in equation (1).

  vrms= 3( 8.314J/ molK )( 123.15K ) 44× 10 3 kg/ mol vrms=264m/s

Conclusion:

The root mean square speed of the CO2 molecule is 264m/s.

(d)

To determine

The elements found in the atmosphere of the Jupiter.

(d)

Expert Solution
Check Mark

Explanation of Solution

Given:

The escape speed of gas molecules is 60km/s.

The temperature at the Jupiter surface is 150°C.

Formula used:

Write the expression for the rms speed of the molecule.

  vrms=3RTM

Here, vrms is the root mean square value of the molecule, R is the gas constant, T is the temperature and M is the molecular mass of the molecule.

Calculate 20% of escape velocity for Jupiter.

  v=15vescape ........ (3)

Here, vescape is the escape velocity of the Jupiter.

Calculation:

Substitute 60km/s for vescape in equation (3).

  v=15(60km/s)v=12km/s

Conclusion:

The velocity on the Jupiter is greater than root mean square speed for the O2,

  CO2 , H2 . Thus, these molecules will be found in Jupiter.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1)  Consider two positively charged particles, one of charge q0 (particle 0) fixed at the origin, and another of charge q1 (particle 1) fixed on the y-axis at (0,d1,0). What is the net force F→ on particle 0 due to particle 1? Express your answer (a vector) using any or all of k, q0, q1, d1, i^, j^, and k^. 2)  Now add a third, negatively charged, particle, whose charge is −q2− (particle 2). Particle 2 fixed on the y-axis at position (0,d2,0). What is the new net force on particle 0, from particle 1 and particle 2? Express your answer (a vector) using any or all of k, q0, q1, q2, d1, d2, i^, j^, and k^.  3) Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of d1 and d2, the repulsion and attraction should balance each other, resulting in no net force. For what ratio d1/d2 is there no net force on particle 0? Express your answer in terms of any or all of the following variables: k, q0, q1, q2.
A 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first. (a) What (in V) is the peak emf? 7.17 V (b) At what time (in s) is the peak emf first reached? 0.196 S (c) At what time (in s) is the emf first at its most negative? 0.589 x s (d) What is the period (in s) of the AC voltage output? 0.785 S
A bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?

Chapter 17 Solutions

Physics for Scientists and Engineers

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning