
Concept explainers
(a)
The pressure at the center of sun.
Given:
Temperature at the center of the gas is 1 × 10 7 K .
Density at the center of sun is 1 × 10 5 kg / m 3 .
Formula used:
Write the expression for the ideal gas.
P V = n R T
Here, P is the pressure, V is the volume, n is the number of moles, R is the gas constant and T is the temperature.
Solve the above equation for P .
P = n R T V ........ (1)
Write the expression for the number of moles.
n p = m p M p ........ (2)
Here, n p is the number of moles of protons, m p is the mass of protons and M p is the molar ma of proton.
Calculation:
Substitute 10 5 kg for m p and 10 − 3 kg for M p in equation (2).
n p = 10 5 kg 10 − 3 kg n p = 10 8
The number of electrons is 2 × 10 8 .
Substitute 2 × 10 8 mol for n , 8.314 J / mol ⋅ K for R , 10 7 K for T and 1 m 3 for V in equation (1).
P = ( 2 × 10 8 ) ( 8.314 J / mol ⋅ K ) 10 7 K 1 m 3 P = 2 × 10 11 atm
Conclusion:
The pressure is 2 × 10 11 atm .
The pressure at the center of sun.
Given:
Temperature at the center of the gas is
Density at the center of sun is
Formula used:
Write the expression for the ideal gas.
Here,
Solve the above equation for
Write the expression for the number of moles.
Here,
Calculation:
Substitute
The number of electrons is
Substitute
Conclusion:
The pressure is
(a)

Explanation of Solution
Given:
Temperature at the center of the gas is
Density at the center of sun is
Formula used:
Write the expression for the ideal gas.
Here,
Solve the above equation for
Write the expression for the number of moles.
Here,
Calculation:
Substitute
The number of electrons is
Substitute
Conclusion:
The pressure is
(b)
The root mean square speed of electron and proton at the center of the sun.
(b)

Explanation of Solution
Given:
TheTemperature at the center of the gas is
Formula used:
Write the expression for the root mean square speed of the molecule.
Here,
Calculation:
Substitute
Substitute
Conclusion:
The rms speed of proton and electron at the center of sun is
Want to see more full solutions like this?
Chapter 17 Solutions
Physics for Scientists and Engineers
- A 23.0-mw (mill:-Watts) laser puts out a narrow cyclindrical beam 50 mm in diameter. What is the average N/C. rms E-field?arrow_forwardThe average intensity of light emerging from a polarizing sheet is. 0.550 W/m², and the average intensity of the horizontally polarized light incident on the sheet is 0.940 W/m². Determine the angle that the transmission axis of the polarizing sheet makes with the horizontalarrow_forwardwe measure an At a particular moment in time and space, electromagnetic wave's electric and magnetic fields. We find the electric field & pointing North and the magnetic field B pointing Down. What is the direction of wave propagation? a. South b. West C. c. Up d. Down e. East f. North.arrow_forward
- Hello, please help with how to calculate impact velocity and rebound velocity. Thanks!arrow_forwardA object of mass 3.00 kg is subject to a force FX that varies with position as in the figure below. Fx (N) 4 3 2 1 x(m) 2 4 6 8 10 12 14 16 18 20 i (a) Find the work done by the force on the object as it moves from x = 0 to x = 5.00 m. J (b) Find the work done by the force on the object as it moves from x = 5.00 m to x = 11.0 m. ] (c) Find the work done by the force on the object as it moves from x = 11.0 m to x = 18.0 m. J (d) If the object has a speed of 0.400 m/s at x = 0, find its speed at x = 5.00 m and its speed at x speed at x = 5.00 m speed at x = 18.0 m m/s m/s = 18.0 m.arrow_forwardAn EL NIÑO usually results in Question 8Select one: a. less rainfall for Australia. b. warmer water in the western Pacific. c. all of the above. d. none of the above. e. more rainfall for South America.arrow_forward
- A child's pogo stick (figure below) stores energy in a spring (k = 2.05 × 104 N/m). At position (✗₁ = -0.100 m), the spring compression is a maximum and the child is momentarily at rest. At position ® (x = 0), the spring is relaxed and the child is moving upward. At position child is again momentarily at rest at the top of the jump. Assume that the combined mass of child and pogo stick is 20.0 kg. B A (a) Calculate the total energy of the system if both potential energies are zero at x = 0. (b) Determine X2- m (c) Calculate the speed of the child at x = 0. m/s (d) Determine the value of x for which the kinetic energy of the system is a maximum. mm (e) Obtain the child's maximum upward speed. m/s thearrow_forwardAn EL NIÑO usually results in Question 8Select one: a. less rainfall for Australia. b. warmer water in the western Pacific. c. all of the above. d. none of the above. e. more rainfall for South America.arrow_forwardEarth’s mantle is Question 12Select one: a. Solid b. Liquid c. Metallic d. very dense gasarrow_forward
- Silicates Question 18Select one: a. All of these b. Are minerals c. Consist of tetrahedra d. Contain silicon and oxygenarrow_forwardWhich of the following is not one of the major types of metamorphism? Question 20Select one: a. Fold b. Contact c. Regional d. Sheararrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? m (b) What maximum acceleration will he experience? m/s²arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





