Concept explainers
(a)
The pressure at the center of sun.
Given:
Temperature at the center of the gas is 1 × 10 7 K .
Density at the center of sun is 1 × 10 5 kg / m 3 .
Formula used:
Write the expression for the ideal gas.
P V = n R T
Here, P is the pressure, V is the volume, n is the number of moles, R is the gas constant and T is the temperature.
Solve the above equation for P .
P = n R T V ........ (1)
Write the expression for the number of moles.
n p = m p M p ........ (2)
Here, n p is the number of moles of protons, m p is the mass of protons and M p is the molar ma of proton.
Calculation:
Substitute 10 5 kg for m p and 10 − 3 kg for M p in equation (2).
n p = 10 5 kg 10 − 3 kg n p = 10 8
The number of electrons is 2 × 10 8 .
Substitute 2 × 10 8 mol for n , 8.314 J / mol ⋅ K for R , 10 7 K for T and 1 m 3 for V in equation (1).
P = ( 2 × 10 8 ) ( 8.314 J / mol ⋅ K ) 10 7 K 1 m 3 P = 2 × 10 11 atm
Conclusion:
The pressure is 2 × 10 11 atm .
The pressure at the center of sun.
Given:
Temperature at the center of the gas is
Density at the center of sun is
Formula used:
Write the expression for the ideal gas.
Here,
Solve the above equation for
Write the expression for the number of moles.
Here,
Calculation:
Substitute
The number of electrons is
Substitute
Conclusion:
The pressure is
(a)
Explanation of Solution
Given:
Temperature at the center of the gas is
Density at the center of sun is
Formula used:
Write the expression for the ideal gas.
Here,
Solve the above equation for
Write the expression for the number of moles.
Here,
Calculation:
Substitute
The number of electrons is
Substitute
Conclusion:
The pressure is
(b)
The root mean square speed of electron and proton at the center of the sun.
(b)
Explanation of Solution
Given:
TheTemperature at the center of the gas is
Formula used:
Write the expression for the root mean square speed of the molecule.
Here,
Calculation:
Substitute
Substitute
Conclusion:
The rms speed of proton and electron at the center of sun is
Want to see more full solutions like this?
Chapter 17 Solutions
Physics for Scientists and Engineers
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON