Starting Out with C++: Early Objects
8th Edition
ISBN: 9780133360929
Author: Tony Gaddis, Judy Walters, Godfrey Muganda
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 3PC
Program Plan Intro
List Print
Program Plan:
- Include the required specifications into the program.
- Declare a class ListNode.
- Declare the member variables “value” and “*p” in structure named “ListNode”.
- The data value of node is stored in variable v and address to next pointer is stored in pointer p
- Declare the constructor, destructor, and member functions in the class.
- Declare the structure variable “next” and a friend class Linked List
- Declare a class LinkList.
- Function to insert elements into the linked list “void add(double n)”is defined.
- Function to check whether a particular node with a data value n is a part of linked list or not “bool isMember(double n)”.
- Declaration of structure variable head to store the first node of the list “ListNode * head” is defined.
- A function “void LinkedList::add(double n)” is defined which adds or inserts new nodes into the link list.
- A function “bool LinkedList::isMember(double n)” is defined which searches for a given data value within the nodes present in the link list.
- A destructor “LinkedList::~LinkedList()” deallocates the memory for the link list.
- A function “void LinkedList::print()” is used to print all the node data values present in the link list by traversing through each nodes in the link list.
- Declare the main class.
- Create an empty list to enter the data values into the list.
- Copy is done using copy constructor.
- Input “5” numbers from user and insert the data values into the link list calling “void LinkedList::add(double n)” function.
- Print the data values of the nodes present in the link list.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
struct Node {
int data;
Node * next;
};
Node • head;
a. Write a function named addNode that takes in a variable of type int and inserts it at the head of
the list.
b. Write a function named removeNode that removes a node at the head of the list.
Remove Duplicates
This function will receive a list of elements with duplicate elements, this function should remove the duplicate elements in the list and return a list without duplicate elements. The elements in the returned list must be in the same order that they were found in the list the function received. A duplicate element is an element found more than one time in the specified list.
C++ function Linked list
Write a function, to be included in an unsorted linked list class, called replaceItem, that will receive two parameters, one called olditem, the other called new item. The function will replace all occurrences of old item with new item (if old item exists !!) and it will return the number of replacements done.
Chapter 17 Solutions
Starting Out with C++: Early Objects
Ch. 17.1 - Prob. 17.1CPCh. 17.1 - Prob. 17.2CPCh. 17.1 - Prob. 17.3CPCh. 17.1 - Prob. 17.4CPCh. 17.2 - Prob. 17.5CPCh. 17.2 - Prob. 17.6CPCh. 17.2 - Why does the insertNode function shown in this...Ch. 17.2 - Prob. 17.8CPCh. 17.2 - Prob. 17.9CPCh. 17.2 - Prob. 17.10CP
Ch. 17 - Prob. 1RQECh. 17 - Prob. 2RQECh. 17 - Prob. 3RQECh. 17 - Prob. 4RQECh. 17 - Prob. 5RQECh. 17 - Prob. 6RQECh. 17 - Prob. 7RQECh. 17 - Prob. 8RQECh. 17 - Prob. 9RQECh. 17 - Write a function void printSecond(ListNode ptr}...Ch. 17 - Write a function double lastValue(ListNode ptr)...Ch. 17 - Write a function ListNode removeFirst(ListNode...Ch. 17 - Prob. 13RQECh. 17 - Prob. 14RQECh. 17 - Prob. 15RQECh. 17 - Prob. 16RQECh. 17 - Prob. 17RQECh. 17 - Prob. 18RQECh. 17 - Prob. 1PCCh. 17 - Prob. 2PCCh. 17 - Prob. 3PCCh. 17 - Prob. 4PCCh. 17 - Prob. 5PCCh. 17 - Prob. 6PCCh. 17 - Prob. 7PCCh. 17 - Prob. 8PCCh. 17 - Prob. 10PCCh. 17 - Prob. 11PCCh. 17 - Prob. 12PCCh. 17 - Running Back Program 17-11 makes a person run from...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- @6 The Reference-based Linked Lists: Select all of the following statements that are true. options: As a singly linked list's node references both its predecessor and its successor, it is easily possible to traverse such a list in both directions. According to the terminology introduced in class, the head reference variable in a singly linked list object references the list's first node. According to the terminology introduced in class, in a doubly linked list, each node references both the head and tail node. In a double-ended singly linked list, the tail reference variable provides access to the entire list. In a circular linked list, the last node references the first node.arrow_forwardTrue or False The objects of a class can be stored in an array, but not in a List.arrow_forwardflip_matrix(mat:list)->list You will be given a single parameter a 2D list (A list with lists within it) this will look like a 2D matrix when printed out, see examples below. Your job is to flip the matrix on its horizontal axis. In other words, flip the matrix horizontally so that the bottom is at top and the top is at the bottom. Return the flipped matrix. To print the matrix to the console: print('\n'.join([''.join(['{:4}'.format(item) for item in row]) for row in mat])) Example: Matrix: W R I T X H D R L G L K F M V G I S T C W N M N F Expected: W N M N F G I S T C L K F M V H D R L G W R I T X Matrix: L C S P Expected: S P L C Matrix: A D J A Q H J C I Expected: J C I A Q H A D Jarrow_forward
- OCaml Code: Attached are the instructions. Make sure to read the instructions carefully and write your own test cases to make sure the code works. Make sure to include a screenshot of the correct code with the test cases that is used along with the output of the code being passed.arrow_forwardcard_t * moveCardBack (card t *head); The moveCardBack function will take the card in front of the pile and place it in the back. In coding terms, you are taking the head of the linked list and moving it to the end. The function has one parameter which is the head of the linked list. After moving the card to the back, the function returns the new head of the linked list.arrow_forwardfor c++ please thank you please type the code so i can copy and paste easily thanks. 4, List search Modify the linked listv class you created in the previous programming challange to include a member function named search that returns the position of a specific value, x, in the lined list. the first node in the list is at position 0, the second node is at position 1, and so on. if x is not found on the list, the search should return -1 test the new member function using an approprate driver program. here is my previous programming challange. #include <iostream> using namespace std; struct node { int data; node *next; }; class list { private: node *head,*tail; public: list() { head = NULL; tail = NULL; } ~list() { } void append() { int value; cout<<"Enter the value to append: "; cin>>value; node *temp=new node; node *s; temp->data = value; temp->next = NULL; s = head; if(head==NULL) head=temp; else { while (s->next != NULL) s = s->next; s->next =…arrow_forward
- OCaml Code: Please read the attached instructions carefully and show the correct code with the screenshot of the output. I really need help with this assignment.arrow_forwardC++ Programming Language ::::::: Redo the same functions this time as nonmember functions please : NOTE: You can add only one function into the linked list class get_at_position which will return value of element at given position. 1) Insert before tail : Insert a value into a simply linked list, such that it's location will be before tail. So if a list contains {1, 2, 3}, insert before tail value 9 is called, the list will become {1, 2, 9, 3}. 2) Insert before value : Insert a value into a simply linked list, such that it's location will be before a particular value. So if a list contains {1, 2, 3}, insert before 2 value 9 is called, the list will become {1, 9, 2, 3}. 3)Count common elements : Count common values between two simply linked lists.So if a list1 contains {1, 2, 3, 4, 5}, and list2 contains {1, 3, 4, 6}, number of common elements is 3. 4) Check if sorted : Check if elements of simply linked lists are sorted in ascending order or not.So if a list contains {1, 3, 7, 8, 9}…arrow_forwardReference-based Linked Lists: Select all of the following statements that are true. As a singly linked list's node references both its predecessor and its successor, it is easily possible to traverse such a list in both directions. According to the terminology introduced in class, the head reference variable in a singly linked list object references the list's first node. According to the terminology introduced in class, in a doubly linked list, each node references both the head and tail node. In a double-ended singly linked list, the tail reference variable provides access to the entire list. In a circular linked list, the last node references the first node.arrow_forward
- a) Write a function to get the value of the Nu node in a Linked List. [Note: The first (N=1) item in the list means the item at index 0.] It takes two parameters: the list or its head, and N. Return False if the list has fewer than N elements. The Linked List structure supports the following function. def getlead(self): return selt.head # it points to a Node structure The Node structure supports the following functions. def getData(self): return self.data # it returns the value stored in the Node def getNext(self): return self next # it points to the next Node b) Write a function that counts the number of times a given integer occurs in a Linked List. Assume similar structures as defined in 1.arrow_forwardRemove Char This function will be given a list of strings and a character. You must remove all occurrences of the character from each string in the list. The function should return the list of strings with the character removed. Signature: public static ArrayList<String> removeChar(String pattern, ArrayList<String> list) Example:list: ['adndj', 'adjdlaa', 'aa', 'djoe']pattern: a Output: ['dndj', 'djdl', '', 'djoe']arrow_forwardpaython programing question Write a program that creates a list of N elements (Hint: use append() function), swaps the first and the last element and prints the list on the screen. N should be a dynamic number entered by the user. Sample output: How many numbers would you like to enter?: 5 Enter a number: 34 Enter a number: 67 Enter a number: 23 Enter a number: 90 Enter a number: 12 The list is: [12, 67,23, 90, 34]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr