. For the reaction system C ( s ) + H 2 O ( g ) ⇌ H 2 ( g ) + CO ( g ) which has already reached a state of equilibrium, predict the effect that each of the following changes will have on the position of the equilibrium. Tell whether the equilibrium will shift to the right, will shift to the left, or will not be affected. a. The pressure of hydrogen is increased by injecting an additional mole of hydrogen gas into the reaction vessel. b. Carbon monoxide gas is removed as it forms by use of a chemical absorbent or “scrubber.” c. An additional amount of solid carbon is added to the reaction vessel.
. For the reaction system C ( s ) + H 2 O ( g ) ⇌ H 2 ( g ) + CO ( g ) which has already reached a state of equilibrium, predict the effect that each of the following changes will have on the position of the equilibrium. Tell whether the equilibrium will shift to the right, will shift to the left, or will not be affected. a. The pressure of hydrogen is increased by injecting an additional mole of hydrogen gas into the reaction vessel. b. Carbon monoxide gas is removed as it forms by use of a chemical absorbent or “scrubber.” c. An additional amount of solid carbon is added to the reaction vessel.
Solution Summary: The author explains Le Chatelier's principle that when an external stress is applied to a system in equilibrium, the equilibrium position shifts to the left.
. For the reaction system
C
(
s
)
+
H
2
O
(
g
)
⇌
H
2
(
g
)
+
CO
(
g
)
which has already reached a state of equilibrium, predict the effect that each of the following changes will have on the position of the equilibrium. Tell whether the equilibrium will shift to the right, will shift to the left, or will not be affected. a. The pressure of hydrogen is increased by injecting an additional mole of hydrogen gas into the reaction vessel. b. Carbon monoxide gas is removed as it forms by use of a chemical absorbent or “scrubber.” c. An additional amount of solid carbon is added to the reaction vessel.
Strain Energy for Alkanes
Interaction / Compound kJ/mol kcal/mol
H: H eclipsing
4.0
1.0
H: CH3 eclipsing
5.8
1.4
CH3 CH3 eclipsing
11.0
2.6
gauche butane
3.8
0.9
cyclopropane
115
27.5
cyclobutane
110
26.3
cyclopentane
26.0
6.2
cycloheptane
26.2
6.3
cyclooctane
40.5
9.7
(Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case
sensitive.)
H.
H
Previous
Next
A certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that
must provide at least 1.10 V of electrical power. The cell will operate under standard conditions.
Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell.
Is there a minimum standard reduction
potential that the half-reaction used at
the cathode of this cell can have?
If so, check the "yes" box and calculate
the minimum. Round your answer to 2
decimal places. If there is no lower
limit, check the "no" box..
Is there a maximum standard reduction
potential that the half-reaction used at
the cathode of this cell can have?
If so, check the "yes" box and calculate
the maximum. Round your answer to 2
decimal places. If there is no upper
limit, check the "no" box.
yes, there is a minimum.
1
red
Πν
no minimum
Oyes, there is a maximum.
0
E
red
Dv
By using the information in the ALEKS…
In statistical thermodynamics, check the
hcv
following equality: ß Aɛ =
KT
Chapter 17 Solutions
Introductory Chemistry: Foundation - Text (Looseleaf)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell