Concept explainers
Interpretation:
The amphoteric nature of water is to be explained. The chemical equation for the autoionization of water and the expression for the equilibrium constant,
Concept Introduction:
The substances which have ability to accept a proton as well as to donate a proton are known as amphoteric substances. The partially dissociation of a liquid into its ions is known as autoionization reaction.

Answer to Problem 5CR
In the reaction of ammonia and water, ammonia will accept a proton from water and acts as a base and water donates a proton and acts as an acid. The corresponding
In the reaction of water and hydrochloric acid, water will accept a proton from hydrochloric acid and acts as a base. The corresponding chemical reaction is shown below.
Both the above reactions show that water is an amphoteric substance.
The chemical equation for the autoionization of water is shown below.
The value of
The concentration of
The hydrolysis of an acid results in the formation of hydrogen ions while the hydrolysis of a base results in the formation of the hydroxyl ions. In the acidic solution, the concentration of hydrogen ions is greater than the concentration of hydroxide ion. While in basic solution, the concentration of hydroxyl ion is greater than the concentration of the hydrogen ion.
Explanation of Solution
According to Bronsted-Lowry concept, the stronger base (than water) has tendency to accept the proton from the water. In the reaction of ammonia and water, here, water donates a proton to ammonia and acts as an acid. The corresponding chemical reaction is shown below.
Similarly, the stronger acid (than water) has tendency to donate a proton to water. In the reaction of water and hydrochloric acid, the water accepts a proton from hydrochloric acid and acts as a base. The corresponding chemical reaction is shown below.
Hence, water is an amphoteric substance.
The chemical equation for the autoionization of water is shown below.
The equilibrium constant for the above reaction is as follows:
The value of
Therefore, the concentration of
The hydrolysis of an acid results in the formation of hydrogen ions while the hydrolysis of a base results in the formation of the hydroxyl ions. In the acidic solution, the concentration of hydrogen ions is greater than the number of hydroxide ion. While in basic solution, the concentration of hydroxyl ion is greater than the concentration of the hydrogen ions.
According to Bronsted-Lowry concept, the base (stronger than water) has tendency to accept the proton from the water. Similarly, an acid (stronger than water) has tendency to donate a proton to water.
In the reaction of ammonia and water, ammonia will accept a proton from water and acts as a base and water donates a proton and acts as an acid. The corresponding chemical reaction is shown below.
In the reaction of water and hydrochloric acid, water will accept a proton from hydrochloric acid and acts as a base. The corresponding chemical reaction is shown below.
Both the above reactions show that water is an amphoteric substance.
The chemical equation for the autoionization of water is shown below.
The equilibrium constant for the above reaction is,
The concentration of
The hydrolysis of an acid results in the formation of hydrogen ions while the hydrolysis of a base results in the formation of the hydroxyl ions. In the acidic solution, the concentration of hydrogen ions is greater than the number of hydroxide ion. While in basic solution, the concentration of hydroxyl ion is greater than the concentration of the hydrogen ion.
Want to see more full solutions like this?
Chapter 17 Solutions
Introductory Chemistry: Foundation - Text (Looseleaf)
- 2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). H-Br CH2Cl2arrow_forwardWrite the aldol condensation mechanism and product for benzaldehyde + cyclohexanone in a base. Then trans-cinnamaldehyde + acetone in base. Then, trans-cinnamaldehyde + cyclohexanone in a base.arrow_forwardClick the "draw structure" button to launch the drawing utility. Draw the structure of the alkene that yields the following set of oxidative cleavage products? draw structure ...arrow_forward
- Identify whether the carbocation or alkyl halide is methyl, primary, secondary, or tertiary.arrow_forwardDraw the products formed when the following alkene is treated with 03 followed by Zn, H₂O. Click the "draw structure" button to launch the drawing utility. draw structure ...arrow_forwardCalculate the pH of 0.600 M solution of CH5N (Kb=4.37 x10-4) Hint: use assumption and check it!arrow_forward
- Draw all stereoisomers formed when the following alkene is treated with mCPBA. Be sure to answer all parts. Part 1: How many stereoisomers of the product are possible? 1 Part 2 out of 2 Draw the product of the reaction, including stereochemistry. edit structure ...arrow_forwardA 3.30x10-2 M solution of monoprotic acid HA has a pH of 3.62. a) what is the percent ionization of this acid? b) what is the Ka of this acid?arrow_forwardIdentify as E1 or E2 and write the mechanism.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





