Concept explainers
Interpretation:
The amphoteric nature of water is to be explained. The chemical equation for the autoionization of water and the expression for the equilibrium constant,
Concept Introduction:
The substances which have ability to accept a proton as well as to donate a proton are known as amphoteric substances. The partially dissociation of a liquid into its ions is known as autoionization reaction.

Answer to Problem 5CR
In the reaction of ammonia and water, ammonia will accept a proton from water and acts as a base and water donates a proton and acts as an acid. The corresponding
In the reaction of water and hydrochloric acid, water will accept a proton from hydrochloric acid and acts as a base. The corresponding chemical reaction is shown below.
Both the above reactions show that water is an amphoteric substance.
The chemical equation for the autoionization of water is shown below.
The value of
The concentration of
The hydrolysis of an acid results in the formation of hydrogen ions while the hydrolysis of a base results in the formation of the hydroxyl ions. In the acidic solution, the concentration of hydrogen ions is greater than the concentration of hydroxide ion. While in basic solution, the concentration of hydroxyl ion is greater than the concentration of the hydrogen ion.
Explanation of Solution
According to Bronsted-Lowry concept, the stronger base (than water) has tendency to accept the proton from the water. In the reaction of ammonia and water, here, water donates a proton to ammonia and acts as an acid. The corresponding chemical reaction is shown below.
Similarly, the stronger acid (than water) has tendency to donate a proton to water. In the reaction of water and hydrochloric acid, the water accepts a proton from hydrochloric acid and acts as a base. The corresponding chemical reaction is shown below.
Hence, water is an amphoteric substance.
The chemical equation for the autoionization of water is shown below.
The equilibrium constant for the above reaction is as follows:
The value of
Therefore, the concentration of
The hydrolysis of an acid results in the formation of hydrogen ions while the hydrolysis of a base results in the formation of the hydroxyl ions. In the acidic solution, the concentration of hydrogen ions is greater than the number of hydroxide ion. While in basic solution, the concentration of hydroxyl ion is greater than the concentration of the hydrogen ions.
According to Bronsted-Lowry concept, the base (stronger than water) has tendency to accept the proton from the water. Similarly, an acid (stronger than water) has tendency to donate a proton to water.
In the reaction of ammonia and water, ammonia will accept a proton from water and acts as a base and water donates a proton and acts as an acid. The corresponding chemical reaction is shown below.
In the reaction of water and hydrochloric acid, water will accept a proton from hydrochloric acid and acts as a base. The corresponding chemical reaction is shown below.
Both the above reactions show that water is an amphoteric substance.
The chemical equation for the autoionization of water is shown below.
The equilibrium constant for the above reaction is,
The concentration of
The hydrolysis of an acid results in the formation of hydrogen ions while the hydrolysis of a base results in the formation of the hydroxyl ions. In the acidic solution, the concentration of hydrogen ions is greater than the number of hydroxide ion. While in basic solution, the concentration of hydroxyl ion is greater than the concentration of the hydrogen ion.
Want to see more full solutions like this?
Chapter 17 Solutions
Introductory Chemistry: Foundation - Text (Looseleaf)
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction LiNO3arrow_forwardAn unknown weak acid with a concentration of 0.410 M has a pH of 5.600. What is the Ka of the weak acid?arrow_forward(racemic) 19.84 Using your reaction roadmaps as a guide, show how to convert 2-oxepanone and ethanol into 1-cyclopentenecarbaldehyde. You must use 2-oxepanone as the source of all carbon atoms in the target molecule. Show all reagents and all molecules synthesized along the way. & + EtOH H 2-Oxepanone 1-Cyclopentenecarbaldehydearrow_forward
- R₂ R₁ R₁ a R Rg Nu R₂ Rg R₁ R R₁₂ R3 R R Nu enolate forming R₁ R B-Alkylated carbonyl species or amines Cyclic B-Ketoester R₁₁ HOB R R₁B R R₁₂ B-Hydroxy carbonyl R diester R2 R3 R₁ RB OR R₂ 0 aB-Unsaturated carbonyl NaOR Aldol HOR reaction 1) LDA 2) R-X 3) H₂O/H₂O ketone, aldehyde 1) 2°-amine 2) acid chloride 3) H₂O'/H₂O 0 O R₁ R₁ R R₁ R₁₂ Alkylated a-carbon R₁ H.C R₁ H.C Alkylated methyl ketone acetoacetic ester B-Ketoester ester R₁ HO R₂ R B-Dicarbonyl HO Alkylated carboxylic acid malonic ester Write the reagents required to bring about each reaction next to the arrows shown. Next, record any regiochemistry or stereochemistry considerations relevant to the reaction. You should also record any key aspects of the mechanism, such as forma- tion of an important intermediate, as a helpful reminder. You may want to keep track of all reactions that make carbon-carbon bonds, because these help you build large molecules from smaller fragments. This especially applies to the reactions in…arrow_forwardProvide the reasonable steps to achieve the following synthesis.arrow_forwardIdentify which compound is more acidic. Justify your choice.arrow_forward
- Provide the reasonable steps to achieve the following synthesis.arrow_forwardWhen anisole is treated with excess bromine, the reaction gives a product which shows two singlets in 1H NMR. Draw the product.arrow_forward(ii) Draw a reasonable mechanism for the following reaction: CI NaOH heat OH (hint: SNAr Reaction) :arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





