DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17, Problem 1RQ
What is plasticity?
Expert Solution & Answer
To determine
The plasticity.
Explanation of Solution
When a material is subjected to some external load, for which there is no regain in original shape and some permanent deformation in the shape is caused, then the body is said to have property of plasticity.
In other words, the plasticity is the property of solid that defines the ability to cause any permanent strain by the body at a load applied on the body beyond the elastic limit. Most of the metallic substances undergo permanent change in shape without undergoing any appreciable change in their properties. Thus, plasticity is an important process in metal forming where the material changes shape to solid phase only.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Solve this and show all of the work
Solve this and show all of the work
Solve this and show all of the work
Chapter 17 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 17 - What is plasticity?Ch. 17 - What are some of the general assets of the...Ch. 17 - Why might large production quantities be necessary...Ch. 17 - What types of deformation may occur in forming...Ch. 17 - What is an independent variable in a...Ch. 17 - What are some considerations regarding selection...Ch. 17 - What is the significance of tool and die geometry...Ch. 17 - Why is lubrication often a major concern in metal...Ch. 17 - What are some of the secondary effects that may...Ch. 17 - Prob. 10RQ
Ch. 17 - Why is it important to be able to predict the...Ch. 17 - Prob. 12RQCh. 17 - Prob. 13RQCh. 17 - Prob. 14RQCh. 17 - Prob. 15RQCh. 17 - Prob. 16RQCh. 17 - Prob. 17RQCh. 17 - What are some of the features that may be...Ch. 17 - What features have contributed to the expanded use...Ch. 17 - What are some of the uses or applications of...Ch. 17 - Prob. 21RQCh. 17 - Prob. 22RQCh. 17 - Prob. 23RQCh. 17 - What type of information about the material being...Ch. 17 - Prob. 25RQCh. 17 - Why is friction such an important parameter in...Ch. 17 - Why are friction effects in metalworking difficult...Ch. 17 - Prob. 28RQCh. 17 - Prob. 29RQCh. 17 - Prob. 30RQCh. 17 - Prob. 31RQCh. 17 - Discuss the significance of wear in metal forming:...Ch. 17 - Lubricants are often selected for properties in...Ch. 17 - What is tribology?Ch. 17 - What are some of the common types of metal forming...Ch. 17 - What is hydrodynamic lubrication? What are some of...Ch. 17 - If the temperature of a material is increased,...Ch. 17 - Define the various regimes of cold working, warm...Ch. 17 - What is an acceptable definition of hot working?...Ch. 17 - What are some of the attractive manufacturing and...Ch. 17 - What are some of the negative aspects of hot...Ch. 17 - Prob. 42RQCh. 17 - Prob. 43RQCh. 17 - If the deformed grains recrystallize during hot...Ch. 17 - Why might a rolled thread offer improved strength...Ch. 17 - How might the temperature of a deforming workpiece...Ch. 17 - Why are heated dies or tools often employed in...Ch. 17 - What generally restricts the upper temperature to...Ch. 17 - What is the primary cause of residual stresses in...Ch. 17 - What is cold working?Ch. 17 - Compared to hot working, what are some of the...Ch. 17 - What are some of the disadvantages of...Ch. 17 - How could cold working be used to reduce the cost...Ch. 17 - Why are cold�forming processes best suited for...Ch. 17 - How can the tensile test properties of a metal be...Ch. 17 - Why is elastic springback an important...Ch. 17 - What is pickling, and how does it remove surface...Ch. 17 - Prob. 58RQCh. 17 - What engineering properties are likely to decline...Ch. 17 - Prob. 60RQCh. 17 - Prob. 61RQCh. 17 - Prob. 62RQCh. 17 - What are some of the advantages of warm forming...Ch. 17 - Prob. 64RQCh. 17 - What material feature is considered to be the...Ch. 17 - Why is isothermal forming considerably more...Ch. 17 - Prob. 67RQCh. 17 - Prob. 1PCh. 17 - Prob. 2PCh. 17 - List and discuss the various economic factors that...Ch. 17 - Prob. 4PCh. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Prob. 1CSCh. 17 - Prob. 2CSCh. 17 - Which stainless steel would you recommend? Begin...Ch. 17 - Prob. 4CSCh. 17 - Prob. 5CSCh. 17 - After drawing and perforating, the residual...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Need helparrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forwardProblem 1 8 in. in. PROBLEM 15.109 Knowing that at the instant shown crank BC has a constant angular velocity of 45 rpm clockwise, determine the acceleration (a) of Point A, (b) of Point D. 8 in. Answer: convert rpm to rad/sec first. (a). -51.2j in/s²; (b). 176.6 i + 50.8 j in/s²arrow_forward
- Problem 4 The semicircular disk has a radius of 0.4 m. At one instant, when 0-60°, it is rotating counterclockwise at 0-4 rad/s, which is increasing in the same direction at 1 rad/s². Find the velocity and acceleration of point B at this instant. (Suggestion: Set up relative velocity and relative acceleration that way you would for a no-slip disk; remember what I told you to memorize on the first day of class.) (Answer: B = −2.98î - 0.8ĵ m/s, ãB = 2.45î - 5.74ĵ m/s²) B 0.4 m y Xarrow_forwardA C C 2r A 2r B B (a) (b) Problem 3 Refer to (b) of the figure shown above. The disk OA is now rolling with no slip at a constant angular velocity of w. Find the angular velocity and angular acceleration of link AB and BC. (Partial Answers: WBC = 2wk, AB = w²k)arrow_forwardProblem 2 Refer to (a) of the figure shown below, where the disk OA rotates at a constant angular velocity of w. Find the angular velocity and angular acceleration of link AB and link BC. (Partial Answers: WBC = wk, AB = w²k) A 2r C B (a) A 2r B (b)arrow_forward
- Example Two rotating rods are connected by slider block P. The rod attached at A rotates with a constant clockwise angular velocity WA. For the given data, determine for the position shown (a) the angular velocity of the rod attached at B, (b) the relative velocity of slider block P with respect to the rod on which it slides. b = 8 in., w₁ = 6 rad/s. Given: b = 8 in., WA = 6 rad/s CW constant Find: (a). WBE (b). Vp/Frame E 60° 20° Barrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward100 As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the spring constant at time t is k(t) = t sin + N/m. If the mass-spring system has mass m = 2 kg and a damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is subjected to the harmonic external force f (t) = 100 cos 3t N. Find at least the first four nonzero terms in a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement: • Analytically (hand calculations) Creating Simulink Model Plot solutions for first two, three and four non-zero terms as well as the Simulink solution on the same graph for the first 15 sec. The graph must be fully formatted by code.arrow_forward
- Two springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m² = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. (y₁ = 0) www k₁ = 3 Jm₁ = 1 k2=2 www (Net change in spring length =32-31) (y₂ = 0) m₂ = 1 32 32 System in static equilibrium System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁ (t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Produce an animation of the system for all solutions for the first minute.arrow_forwardTwo large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min 1 L/min B y(t) 100 L y(0) = 20 kg 2 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t≥ 0: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.arrow_forward5. Estimate the friction pressure gradient in a 10.15 cm bore unheated horizontal pipe for the following conditions: Fluid-propylene Pressure 8.175 bar Temperature-7°C Mass flow of liquid-2.42 kg/s. Density of liquid-530 kg/m³ Mass flow of vapour-0.605 kg/s. Density of vapour-1.48 kg/m³arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Relationship Between Elastic Constants and Connecting Equations; Author: Engineers Academy;https://www.youtube.com/watch?v=whW5PnM7Pug;License: Standard Youtube License