Using the value of change in entropy of the universe (ΔS univ ) , the nature of the given process has to be explained. Concept Introduction: Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. The second law of thermodynamics says that entropy of the universe is increasing. The change in entropy in the universe (ΔS univ ) is given by the summation of entropy change in the system (ΔS sys ) and surroundings (ΔS surr ) . ΔS univ =ΔS sys +ΔS surr ΔS sys associated with a phase transition reaction can be found by the following equation. ΔS sys = ΔΗ sys T Where, ΔΗ sys is the change in enthalpy of the system T is the absolute value of the temperature ΔS surr associated with a phase transition reaction can be found by the following equation. ΔS surr = -ΔΗ sys T
Using the value of change in entropy of the universe (ΔS univ ) , the nature of the given process has to be explained. Concept Introduction: Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. The second law of thermodynamics says that entropy of the universe is increasing. The change in entropy in the universe (ΔS univ ) is given by the summation of entropy change in the system (ΔS sys ) and surroundings (ΔS surr ) . ΔS univ =ΔS sys +ΔS surr ΔS sys associated with a phase transition reaction can be found by the following equation. ΔS sys = ΔΗ sys T Where, ΔΗ sys is the change in enthalpy of the system T is the absolute value of the temperature ΔS surr associated with a phase transition reaction can be found by the following equation. ΔS surr = -ΔΗ sys T
Solution Summary: The author explains that entropy is a thermodynamic quantity, which is useful in explaining the spontaneity of the process.
Science that deals with the amount of energy transferred from one equilibrium state to another equilibrium state.
Chapter 17, Problem 17.81QP
Interpretation Introduction
Interpretation:
Using the value of change in entropy of the universe (ΔSuniv), the nature of the given process has to be explained.
Concept Introduction:
Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. The second law of thermodynamics says that entropy of the universe is increasing. The change in entropy in the universe (ΔSuniv) is given by the summation of entropy change in the system (ΔSsys) and surroundings (ΔSsurr).
ΔSuniv=ΔSsys+ΔSsurr
ΔSsys associated with a phase transition reaction can be found by the following equation.
ΔSsys=ΔΗsysT
Where,
ΔΗsys is the change in enthalpy of the system
T is the absolute value of the temperature
ΔSsurr associated with a phase transition reaction can be found by the following equation.
my ccc edu - Search
X
Quick Access
X
D2L Homepage - Spring 2025 x N Netflix
X
Dimensional Analysis - A x+
pp.aktiv.com
Q ☆
X
Question 59 of 70
The volume of
1
unit of plasma is 200.0 mL
If the recommended dosage
for adult patients is 10.0 mL per kg of body mass, how many units are needed for
a patient with a body mass of 80.0
kg ?
80.0
kg
10.0
DAL
1
units
X
X
4.00
units
1
1
Jeg
200.0
DAL
L
1 units
X
200.0 mL
= 4.00 units
ADD FACTOR
*( )
DELETE
ANSWER
RESET
D
200.0
2.00
1.60 × 10³
80.0
4.00
0.0400
0.250
10.0
8.00
&
mL
mL/kg
kg
units/mL
L
unit
Q Search
delete
prt sc
111
110
19
Identify the starting material in the following reaction. Click the "draw structure" button to launch the
drawing utility.
draw structure ...
[1] 0 3
C10H18
[2] CH3SCH3
H
In an equilibrium mixture of the formation of ammonia from nitrogen and hydrogen, it is found that
PNH3 = 0.147 atm, PN2 = 1.41 atm and Pн2 = 6.00 atm. Evaluate Kp and Kc at 500 °C.
2 NH3 (g) N2 (g) + 3 H₂ (g)
K₂ = (PN2)(PH2)³ = (1.41) (6.00)³ = 1.41 x 104
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY