Applied Statics and Strength of Materials (6th Edition)
6th Edition
ISBN: 9780133840544
Author: George F. Limbrunner, Craig D'Allaird, Leonard Spiegel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17, Problem 17.2P
A horizontal 30-ft simple span beam is supported on a 20° slope and is loaded as shown. The uniformly distributed line load covers the full span. Determine the maximum tensile and compressive stresses due to bending. The beam weight is included in the given load.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A wooden log is to be used as a footbridge to span 3.50-m gap. The log is
required to support a concentrated load of 30 kN at midspan and a uniformly
distributed load of 20 kN/m throughout the span. If the allowable stress in
shear is 0.7 MPa.
1. What is the diameter of the log that would be needed? Assume the log
is very nearly circular and the bending stresses are adequately met.
Neglect the weight of the log.
2. If the log is to be trimmed to have a square cross section, what
shall be the resulting dimensions (Round off to the nearest whole
number).
3. Compute for the maximum flexural stress of the beam loading.
Please help. This problem involves bending moments and moments of inertia. I just need the moment of inertia. Thank you.
a. the maximum tension bending stress at any location along the beam
b. Determine the maximum compression bending stress at any location along the beam
Chapter 17 Solutions
Applied Statics and Strength of Materials (6th Edition)
Ch. 17 - Prob. 17.1PCh. 17 - A horizontal 30-ft simple span beam is supported...Ch. 17 - A 1-in.-by-4-in, steel bar is subjected to the...Ch. 17 - A W410100 structural steel wide-flange section is...Ch. 17 - A W1272 structural steel wide-flange section is...Ch. 17 - A solid steel shaft 3 in. in diameter and 4 ft...Ch. 17 - A short compression member is subjected to a...Ch. 17 - With reference to Problem 17.7, calculate the...Ch. 17 - A section of a 51-mm-diameter standard-weight...Ch. 17 - For the pipe of Problem 17.9, compute the maximum...
Ch. 17 - A concrete pedestal is in the shape of a cube and...Ch. 17 - 17.12 For the pedestal of Problem 17.11, assume...Ch. 17 - 17.13 Rework Problem 17.11, but assume that the...Ch. 17 - A 12-in-square concrete pedestal is subjected to a...Ch. 17 - 17.15 A short compression member is subjected to a...Ch. 17 - A rectangular concrete footing, 4 ft by 8 ft in...Ch. 17 - The bending and shear stresses developed at a...Ch. 17 - Stresses developed at a point in a machine part...Ch. 17 - Calculate the principal stresses at points A and B...Ch. 17 - 17.20 Rework Problem 17.19 using P = 8000 lb and...Ch. 17 - 17.21 A 1-in.-square steel bar is subjected to an...Ch. 17 - 17.22 A bar having a cross-sectional area of 6...Ch. 17 - Rework Problem 17.22, changing the load to a...Ch. 17 - Solve Problem l7.17 using Mohr’s circle.Ch. 17 - For the elements shown in Problem 17.18, use...Ch. 17 - Solve Problem 17.19 using Mohr’s circle.Ch. 17 - In Problem 17.19, change the load to 8000 lb and...Ch. 17 - For the following computer problems, any...Ch. 17 - For the following computer problems, any...Ch. 17 - For the following computer problems, any...Ch. 17 - For the following computer problems, any...Ch. 17 - A 4-in.-by-8-in. (S4S) Douglas fir timber beam is...Ch. 17 - A horizontal flexural member (a girt) in the wall...Ch. 17 - A simply supported W1850 structural steel...Ch. 17 - A steel link in a machine is designed to avoid...Ch. 17 - 17.36 An 8-in-square (S4S) vertical timber post is...Ch. 17 - A short 3-in.-square steel bar with a...Ch. 17 - A timber member 150 mm by 250 mm (S4S) is loaded...Ch. 17 - A concrete wall 8 ft high and 3 ft thick is...Ch. 17 - 17.40 A short compression member is subjected to a...Ch. 17 - 17.41 Calculate the maximum eccentric load that...Ch. 17 - A short compression member is subjected to two...Ch. 17 - 17.43 Calculate the force P that may be applied to...Ch. 17 - 17.44 A load of 1000 lb is supported on a...Ch. 17 - 17.45 A short compression member is subjected to...Ch. 17 - 17.46 A structural steel wide-flange section is...Ch. 17 - 17.47 A cast-iron frame for a piece of industrial...Ch. 17 - 17.48 The assembly shown is used in a machine. It...Ch. 17 - 17.49 A 50-mm-diameter solid steel shaft is...Ch. 17 - An element of a machine member is subjected to the...Ch. 17 - 17.51 A short-span cantilever built-up beam has...Ch. 17 - Solve Problem 17.50 using Mohr’s circle.Ch. 17 - 17.53 A cantilever beam is subjected to an...Ch. 17 - A 6-in.-diameter solid shaft is subjected to a...Ch. 17 - Rework parts (b) and (c) of Example 17.7 using...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 20 ft long simply supported beam has 15-inch outside diameter with 1-inch-thick circular section. The beam carries 10 lb/ft uniformly distributed load from the right support to its middle span. Another 15 lb concentrated load applied downward in the left-end support. Determine the maximum bending stress (k-lb/ft2) of the simply supported beam.arrow_forwardLet a=4 ft, b=6 ft, c=4 ft and w-7.5 kips/ft. Construct the shear-force and bending-moment diagrams on paper and use the results to answer the questions a B b W C- C D -X Calculate the reaction forces Ay acting on the beam. (Note: Since Ax = 0, it has been omitted from the free-body diagram.) Final answer in kips rounded-off to 1 decimal placearrow_forwardDraw neat shear and moment diagrams for the beam. 3 kip 800 lb/ft Then determine the maximum tensile and compressive bending stresses. B - 6 ft - 9 ft 9 ft 12 in. 1 in. 5 in. 1 in. -6 in. 1 in. 1 in.arrow_forward
- strenght of materials problemsarrow_forwardThe simply supported beam with following cross section is loaded with concentrated loads and uniform load as shown. Determine a) the maximum tensile and compressive bending stress if P= 150 kip and w = 10 kip/ft, and b) the allowable uniform load w if the allowable bending stress is 24 Ksi and P = 15w. 3.169 in and c 1.5 inch Draw the FBD and calculate the reaction forces and shear and bending moment diagram. Draw the stress profile. Determine the maximum bending moment and its location 0.25 in. 3 ft 3 ft -0.25 in. 3 in. 10 ft 0.25 in. 3 in. -arrow_forward1. For the simply supported beam with a T-shape cross-section as shown below, a- Draw the shear and moments diagram of the beam. b- Determine the maximum normal bending stress and specify its location. C- If the beam made from two boards determines the maximum shear stress in the glue necessary to hold the boards together along the seam where they are joined. d- Determine the shear stress at point B. 4 m 6.5 kN/m 6m- Glue 150 mm 30 mm 150 mm 30 mmarrow_forward
- PLEASE ANSWER THIS URGENT. I WILL SURELY UPVOTE!!!arrow_forwardConsidering only pure bending, determine the minimum section modulus for the component and loads shown. Assume ?? of 36,000 psi and a factor of safety of 1.67. (Hint: the part does not have to exceed the allowable stress) Do not forget to draw and calculate the diagram of shear force and bending moment The distances in the beam are in feet. The value of the load P1 and P4 is 2 kips. The value of the loads P2 and P3 is 6 kipsarrow_forward- once answered Correctly will UPVOTE!!arrow_forward
- . For the beam shown, calculate (a) the maximum bending stress; and (b) the bending stress at a point 0.75 in from the top of the beam at section 5 ft from left end of the beam. 2000 lb 3000 lb 2 in 3 ft 4 ft 1 ft 5 in 5 ft Figure 5.5.4arrow_forwardSolve for the largest shraring stress in that section. Please show all values and where you got the numbers from when solving for moment of inertia, thank you.arrow_forwardDraw a FBD of section CD. Do not solve the rest of the problemarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanics of Materials Lecture: Beam Design; Author: UWMC Engineering;https://www.youtube.com/watch?v=-wVs5pvQPm4;License: Standard Youtube License