MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
4th Edition
ISBN: 9781266368622
Author: NEAMEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 17, Problem 17.1TYU
(a)
To determine
The
(b)
To determine
The value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Inverter.
Below is an example of an NMOS logic circuit. For all of the MOSFETs in the circuit below,
assume V = 1 V and k = 50 mA/V².
th
R₂ = 5600
R₁ = 4700
M3
Ao
M₁
M₂
a. Indicate and verify the state of each MOSFET and V for the following input
0
combinations. Fill-out the table below for each assumed state of the MOSFET for every
input combination. Use R approximation for linear operation and three significant
ds(on)
figures for the voltages.
Example:
M1 is assumed to be in saturation.
If Vgs = 2 V, Vds = 4V,
Vds > Vgs - Vth
4>2-1
4> 1 (ok)
Vgs > Vth (2>1)
A
B
M1 state
M2 state
M3 state
V
OV
OV
5 V
OV
b. What kind of logic circuit is implemented in the circuit above?
5V
www.
V₂
0
Below is an example of an NMOS logic circuit. For all of the MOSFETs in the circuit below,
assume V = 1 V and k = 50 mA/V².
th
5V
R₂ = 5600
R₁ = 4700
M₁
M₂ OB
c. Indicate and verify the state of each MOSFET and V for the following input
combinations. Fill-out the table below for each assumed state of the MOSFET for every
input combination. Use R approximation for linear operation and three significant
ds(on)
figures for the voltages.
Example:
M1 is assumed to be in saturation.
If Vgs = 2 V, Vds = 4V,
Vds > Vgs - Vth
4>2-1
4> 1 (ok)
Vgs > Vth (2>1)
A
B
M1 state
M2 state
M3 state
V
OV
OV
5 V
OV
d. What kind of logic circuit is implemented in the circuit above?
5V
M3
Vo
0
Chapter 17 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
Ch. 17 - Consider the differential amplifier circuit in...Ch. 17 - Prob. 17.2EPCh. 17 - The reference circuit in Figure 17.5 is to be...Ch. 17 - Assume the maximum currents in Q3 and Q4 of the...Ch. 17 - Prob. 17.5EPCh. 17 - Prob. 17.6EPCh. 17 - Prob. 17.1TYUCh. 17 - Prob. 17.2TYUCh. 17 - Prob. 17.7EPCh. 17 - Prob. 17.3TYU
Ch. 17 - The ECL circuit in Figure 17.19 is an example of...Ch. 17 - Consider the basic DTL circuit in Figure 17.20...Ch. 17 - The parameters of the TIL NAND circuit in Figure...Ch. 17 - Prob. 17.10EPCh. 17 - Prob. 17.5TYUCh. 17 - Prob. 17.6TYUCh. 17 - Prob. 17.7TYUCh. 17 - Prob. 17.8TYUCh. 17 - Prob. 17.11EPCh. 17 - Prob. 17.12EPCh. 17 - Prob. 17.9TYUCh. 17 - Prob. 17.10TYUCh. 17 - Prob. 17.11TYUCh. 17 - Prob. 1RQCh. 17 - Why must emitterfollower output stages be added to...Ch. 17 - Sketch a modified ECL circuit in which a Schottky...Ch. 17 - Explain the concept of series gating for ECL...Ch. 17 - Sketch a diodetransistor NAND circuit and explain...Ch. 17 - Explain the operation and purpose of the input...Ch. 17 - Sketch a basic TTL NAND circuit and explain its...Ch. 17 - Prob. 8RQCh. 17 - Prob. 9RQCh. 17 - Prob. 10RQCh. 17 - Explain the operation of a Schottky clamped...Ch. 17 - Prob. 12RQCh. 17 - Prob. 13RQCh. 17 - Sketch a basic BiCMOS inverter and explain its...Ch. 17 - For the differential amplifier circuit ¡n Figure...Ch. 17 - Prob. 17.2PCh. 17 - Prob. 17.3PCh. 17 - Prob. 17.4PCh. 17 - Prob. 17.5PCh. 17 - Prob. 17.6PCh. 17 - Prob. 17.7PCh. 17 - Prob. 17.8PCh. 17 - Prob. 17.9PCh. 17 - Prob. 17.10PCh. 17 - Prob. 17.11PCh. 17 - Prob. 17.12PCh. 17 - Prob. 17.13PCh. 17 - Prob. 17.14PCh. 17 - Prob. 17.15PCh. 17 - Prob. 17.16PCh. 17 - Prob. 17.17PCh. 17 - Prob. 17.18PCh. 17 - Consider the DTL circuit shown in Figure P17.19....Ch. 17 - Prob. 17.20PCh. 17 - Prob. 17.21PCh. 17 - Prob. 17.22PCh. 17 - Prob. 17.23PCh. 17 - Prob. 17.24PCh. 17 - Prob. 17.25PCh. 17 - Prob. 17.26PCh. 17 - Prob. 17.27PCh. 17 - Prob. 17.28PCh. 17 - Prob. 17.29PCh. 17 - Prob. 17.30PCh. 17 - Prob. 17.31PCh. 17 - Prob. 17.32PCh. 17 - Prob. 17.33PCh. 17 - For the transistors in the TTL circuit in Figure...Ch. 17 - Prob. 17.35PCh. 17 - Prob. 17.36PCh. 17 - Prob. 17.37PCh. 17 - Prob. 17.38PCh. 17 - Prob. 17.39PCh. 17 - Prob. 17.40PCh. 17 - Prob. 17.41PCh. 17 - Prob. 17.42PCh. 17 - Prob. 17.43PCh. 17 - Prob. 17.44PCh. 17 - Design a clocked D flipflop, using a modified ECL...Ch. 17 - Design a lowpower Schottky TTL exclusiveOR logic...Ch. 17 - Design a TTL RS flipflop.
Knowledge Booster
Similar questions
- 5. Design a two-level NAND-gate logic circuit from the follow timing diagram B %3D D Farrow_forward1.1 Given the timing diagram for 3-bit input A and two outputs, S and C in Figure la, where A2 is the MSB and Ao is the LSB. Assume the output for the other input conditions is don't cares (i.c. X). Determine the minimum logic circuit using NAND logic configuration. Az Ac S C Figure laarrow_forwardPlease answer the question given in the picture.arrow_forward
- Assume Vth = 1V and k = 50mA/V2. Given the schematic below, do the following: 1) Indicate and verify the state of each MOSFET and ?0 for the following input combinations. Fill-out the table below for each assumed state of the MOSFET for every input combination. Use ?ds,on approximation for linear operation. 2) Determine what kind of logic circuit is implemented in the circuit.arrow_forwardFor the modified DTL circuit in Figure P17.25, calculate the indicated currents in the figure for vX = vY = 5 V. Vcc =5 V R = 1.75 k2 Rc=6 kl23 lic R2 = 2 k2 Dx l'x o iBo QI DI RB%3D 5 k2 Dy Figure P17.25arrow_forwardDue to availability of NAND gate ICs only, design a digital logic circuit for the following functions. Circuit designed using EPIS is considered as the correct answer: F1=Em (1,3.7.9.11) + Ed (0.8,12,13). F2 =Em (1,3.5.6.8,10.12,15) +Ed (0,11,14).arrow_forward
- Please solve Correctly other wise ready for Dislike.arrow_forwardIllustrate a 2 bit binary parallel adder (it is a digital circuit that produces arithmetic sum of two binary numbers in parallel) also mark which transistors are “ON” and “OFF” if inputs are 10 and 01 using Emitter-coupled logic (ECL)arrow_forwardneed help with parts D, Earrow_forward
- 17 Three-phase inverter is supplied by voltage 800V and is controlled by sinusoidal PWM with modulation index 0.8. What is the value of amplitude of the fundamental component of the AC output voltage? 160V 320V 400V 640Varrow_forward7) The following figure shows a transistor-level (CMOS) circuit for some logic gate. Sketch the logic gate for the CMOS gate. Choices: a) NAND gate b) AND gate c) OR gate d) NOR gatearrow_forward(a) Figure Q.4 (a) shows a combinational logic cireuit with output, Z and Table Q.4(a) depicts the delay for each logic gate in nanoseconds (ns). Determine the critical path and critical path delay in nanoseconds (ns). В Figure Q.4(a) Table Q.4 (a) Logic Gate NOT Delay (ns) 4 OR 8 AND 16 NAND 12 NOR 10 XOR 28 XNOR 32arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,