Concept explainers
An analytical chemist has a solution containing chloride ion, Cl−. She decides to determine the amount of chloride ion in the solution by titrating 50.0 mL of this solution by 0.100 M AgNO3. As a way to indicate the endpoint of the titration, she added 1.00 g of potassium chromate, K2CrO4 (see Figure 17.5). As she slowly added the silver nitrate to the solution, a white precipitate formed. She continued the titration, with more white precipitate forming. Finally, the solution turned red, from another precipitate. The volume of the solution at this point was 60.3 mL. How many moles of chloride ion were there in the original solution? How many moles of chloride ion were there in the final solution? You may make any reasonable approximations.
Trending nowThis is a popular solution!
Chapter 17 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
- Many natural processes can be studied in the laboratory but only in an environment of controlled pH. Which of these combinations is the best to buffer the pH at approximately 7? Explain your choice. H3PO4/NaH2PO4 NaH2PO4/Na2HPO4 Na2HPO4/Na3PO4arrow_forwardWhat must be the concentration of chromate ion in order to precipitate strontium chromate, SrCrO4, from a solution that is 0.0034 M Sr2+?arrow_forwardThe solubility of Mg(OH)2 in water is approximately 9.6 mg/L at a given temperature. Calculate the Ksp of magnesium hydroxide. Calculate the hydroxide concentration needed to precipitate Mg2+ ions such that no more than 5.0 μg Mg2+ per liter remains in the solution.arrow_forward
- A saturated solution of copper(II) iodate in pure water has a copper-ion concentration of 2.7 103 M. a What is the molar solubility of copper iodate in a 0.35 M potassium iodate solution? b What is the molar solubility of copper iodate in a 0.35 M copper nitrate solution? c Should there be a difference in the answers to parts a and b? Why?arrow_forwardThe weak base ethanolamine. HOCH2CH2NH2, can be titrated with HCl. HOCH2CH2NH2(aq)+H3O+(aq)HOCH2CH2NH3+(aq)+H2O(l) Assume you have 25.0 mL of a 0.010 M solution of ethanolamine and titrate it with 0.0095 M HCl. (Kb for ethanolamine is 3.2 107.) (a) What is the pH of the ethanolamine solution before the titration begins? (b) What is the pH at the equivalence point? (c) What is the pH at the halfway point of the titration? (d) Which indicator in Figure 17.11 would be the best choice to detect the equivalence point? (e) Calculate the pH of the solution after adding 5.00, 10.0, 20.0, and 30.0 mL of the acid. (f) Combine the information in parts (a), (b), (c), and (e), and plot an approximate titration curve.arrow_forwardA buffer solution with it pH of 12.00 consists of Na3PO4 and Na2HPO4. The volume of solution is 200.0 mL. (a) Which component of the buffer is present in a larger amount? (b) If the concentration of Na3PO4 is 0.400 M, what mass of Na2HPO4 is present? (c) Which component of the buffer must be added to change the pH to 12.25? What mass of that component is required?arrow_forward
- Sufficient sodium cyanide, NaCN, was added to 0.015 M silver nitrate, AgNO3, to give a solution that was initially 0.108 M in cyanide ion, CN. What is the concentration of silver ion, Ag+, in this solution after Ag(CN)2 forms? The formation constant Kf for the complex ion Ag(CN)2 is 5.6 1018.arrow_forwardThe titration of 0.100 M acetic acid with 0.100 M NaOH is described in the text. What is the pH of the solution when 35.0 mL of the base has been added to 100.0 mL of 0.100 M acetic acid?arrow_forwardA solution is 1.5 104 M Zn2 and 0.20 M HSO4. The solution also contains Na2SO4. What should be the minimum molarity of Na2SO4 to prevent the precipitation of zinc sulfide when the solution is saturated with hydrogen sulfide (0.10 M H2S)?arrow_forward
- If the concentration of Zn2+ in 10.0 mL of water is 1.63 104 M, will zinc hydroxide, Zn(OH)2, precipitate when 4.0 mg of NaOH is added?arrow_forwardConsider the nanoscale-level representations for Question 110 of the titration of the aqueous weak acid HX with aqueous NaOH, the titrant. Water molecules and Na+ ions are omitted for clarity. Which diagram corresponds to the situation: After a very small volume of titrant has been added to the initial HX solution? When enough titrant has been added to take the solution just past the equivalence point? Halfway to the equivalence point? At the equivalence point? Nanoscale representations for Question 110.arrow_forwardA volume of 50 mL of 1.8 M NH3 is mixed with an equal volume of a solution containing 0.95 g of MgCl2. What mass of NH4Cl must be added to the resulting solution to prevent the precipitation of Mg(OH)2?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning