Concept explainers
Find the Fourier series of the given voltage source.

Answer to Problem 12P
The Fourier series
Explanation of Solution
Given data:
The voltage source of the periodic waveform is,
Formula used:
Write the expression to calculate the fundamental angular frequency.
Here,
Write the general expression to calculate trigonometric Fourier series of
Here,
Write the expression to calculate the dc component of the function
Write the expression to calculate Fourier coefficients.
Calculation:
Given voltage source function is,
The time period of the given voltage source function is,
Substitute
Substitute
Simplify the above equation to find
Substitute
Simplify the above equation to find
Assume the following to reduce the equation (6).
Substitute the equations (7) and (8) in equation (6) to find
Consider the following integration formula.
Compare the equations (7) and (10) to simplify the equation (7).
Using the equation (10), the equation (7) can be reduced as,
Simplify the above equation to find
Compare the equations (8) and (10) to simplify the equation (8).
Using the equation (10), the equation (8) can be reduced as,
Simplify the above equation to find
Assume the following to reduce the equation (11).
Substitute the equation (12) in equation (11) to find
Compare the equations (12) and (10) to simplify the equation (12).
Using the equation (10), the equation (12) can be reduced as,
Simplify the above equation to find
Substitute
Substitute
Substitute
Simplify the above equation to find
Assume the following to reduce the equation (14).
Substitute the equations (15) and (16) in equation (14) to find
Compare the equations (15) and (10) to simplify the equation (15).
Using the equation (10), the equation (15) can be reduced as,
Simplify the above equation to find
Compare the equations (16) and (10) to simplify the equation (16).
Using the equation (10), the equation (16) can be reduced as,
Simplify the above equation to find
Assume the following to reduce the equation (18).
Substitute the equation (19) in equation (18) to find
Compare the equations (19) and (10) to simplify the equation (19).
Using the equation (10), the equation (19) can be reduced as,
Simplify the above equation to find
Substitute
Substitute
Substitute
Conclusion:
Thus, the Fourier series
Want to see more full solutions like this?
Chapter 17 Solutions
EE 98: Fundamentals of Electrical Circuits - With Connect Access
- Q2- What are the parameters and loss that can be determined during open-circuit test of singlephase transformer. Draw the circuit diagram of open-circuit test and explain how can you calculate the Parameters and loss.arrow_forwardQ6- the open circuit and short circuit tests on a 10 KVA, 125/250 v, 50 Hz single phase transformer gave the following results: O.C. Test: 125 V,0.6 A, 50 W ( on L.V.) S.C. Test: 20 V, 40 A, 177.78 W (on H.V. side) Calculate: i) Copper losses on half load ii) Full load efficiency at 0.8 leading p.f. iii) Half load efficiency at 0.8 leading p.f. iv) Regulation at full load at 0.9 leading p.f. Ans: 44.445 W, 97.23%, 97.69%, -1.8015%arrow_forwardQ3-A two-winding transformer has a primary winding with 208 turns and a secondary winding with 6 turns. The primary winding is connected to a 4160V system. What is the secondary voltage at no load? What is the current in the primary winding with a 50-amp load connected to the secondary winding? What is the apparent power flowing in the primary and secondary circuits? Ans. 120 V, 1.44 A, 6000 VAarrow_forward
- Q12- A three phase transformer 3300/400 V,has D/Y connected and working on 50Hz. The line current on the primary side is 12A and secondary has a balanced load at 0.8 lagging p.f. Determine the i) Secondary phase voltage ii) Line current iii) Output power Ans. (230.95 V, 99.11 A, 54.94 kW)arrow_forwardQ1- A single phase transformer consumes 2 A on no load at p.f. 0.208 lagging. The turns ratio is 2/1 (step down). If the loads on the secondary is 25 A at a p.f. 0.866 lagging. Find the primary current and power factor.arrow_forwardQ7- A 5 KVA, 500/250 V,50 Hz, single phase transformer gave the following reading: O.C. Test: 250 V,2 A, 50 W (H.V. side open) S.C. Test: 25 V10 A, 60 W (L.V. side shorted) Determine: i) The efficiency on full load, 0.8 lagging p.f. ii) The voltage regulation on full load, 0.8 leading p.f. iii) Draw the equivalent circuit referred to primary and insert all the values it.arrow_forward
- Q4- A single phase transformer has 350 primary and secondary 1050 turns. The primary is connected to 400 V,50 Hz a.c. supply. If the net cross sectional area of core is 50 cm2, calculate i) The maximum value of the flux density in the core. ii) The induced e.m.f in the secondary winding. Ans: 1.029 T, 1200Varrow_forwardpower systems engineeringarrow_forwardpower systemsarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





