The equilibria that are associate with the equations of K inst for each of the given complex ions are to be written. The equations for the K inst of each of the complex ions are to be written. Concept Introduction: According to the law of chemical equilibrium , the equilibrium constant for an equilibrium reaction is the ratio of the product of the molar concentration of products to the product of the molar concentration of the reactants, each raised to the power of their stoichiometric coefficient in the overall balanced equilibrium reaction. For a general equilibrium reaction, aA + bB ⇄ cC+dD , the equilibrium constant will be represented as: K = [C] c [D] d [A] a [B] b The instability constant is reciprocal of the formation constant for an equilibrium reaction. The relation between these two is shown as follows: K inst = 1 K form Here, K inst is the instability constant and K form is the formation constant.
The equilibria that are associate with the equations of K inst for each of the given complex ions are to be written. The equations for the K inst of each of the complex ions are to be written. Concept Introduction: According to the law of chemical equilibrium , the equilibrium constant for an equilibrium reaction is the ratio of the product of the molar concentration of products to the product of the molar concentration of the reactants, each raised to the power of their stoichiometric coefficient in the overall balanced equilibrium reaction. For a general equilibrium reaction, aA + bB ⇄ cC+dD , the equilibrium constant will be represented as: K = [C] c [D] d [A] a [B] b The instability constant is reciprocal of the formation constant for an equilibrium reaction. The relation between these two is shown as follows: K inst = 1 K form Here, K inst is the instability constant and K form is the formation constant.
Definition Definition Number that is expressed before molecules, ions, and atoms such that it balances out the number of components present on either section of the equation in a chemical reaction. Stoichiometric coefficients can be a fraction or a whole number and are useful in determining the mole ratio among the reactants and products. In any equalized chemical equation, the number of components on either side of the equation will be the same.
Chapter 17, Problem 104RQ
Interpretation Introduction
Interpretation:
The equilibria that are associate with the equations of Kinst for each of the given complex ions are to be written. The equations for the Kinst of each of the complex ions are to be written.
Concept Introduction:
According to the law of chemical equilibrium, the equilibrium constant for an equilibrium reaction is the ratio of the product of the molar concentration of products to the product of the molar concentration of the reactants, each raised to the power of their stoichiometric coefficient in the overall balanced equilibrium reaction.
For a general equilibrium reaction, aA + bB ⇄cC+dD, the equilibrium constant will be represented as:
K = [C]c[D]d[A]a[B]b
The instability constant is reciprocal of the formation constant for an equilibrium reaction. The relation between these two is shown as follows:
Kinst=1Kform
Here, Kinst is the instability constant and Kform is the formation constant.
Concentration
Trial1
Concentration of iodide solution (mA)
255.8
Concentration of thiosulfate solution (mM)
47.0
Concentration of hydrogen peroxide solution (mM)
110.1
Temperature of iodide solution ('C)
25.0
Volume of iodide solution (1) used (mL)
10.0
Volume of thiosulfate solution (5:03) used (mL)
Volume of DI water used (mL)
Volume of hydrogen peroxide solution (H₂O₂) used (mL)
1.0
2.5
7.5
Time (s)
16.9
Dark blue
Observations
Initial concentration of iodide in reaction (mA)
Initial concentration of thiosulfate in reaction (mA)
Initial concentration of hydrogen peroxide in reaction (mA)
Initial Rate (mA's)
Draw the condensed or line-angle structure for an alkene with the formula C5H10.
Note: Avoid selecting cis-/trans- isomers in this exercise.
Draw two additional condensed or line-angle structures for alkenes with the formula C5H10.
Record the name of the isomers in Data Table 1.
Repeat steps for 2 cyclic isomers of C5H10
Explain why the following names of the structures are incorrect.
CH2CH3
CH3-C=CH-CH2-CH3
a. 2-ethyl-2-pentene
CH3
|
CH3-CH-CH2-CH=CH2
b. 2-methyl-4-pentene
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell