The equilibria that corresponds to K inst for each of the given complex ions and the equations for K inst are to be written. Concept Introduction: According to the law of chemical equilibrium , the equilibrium constant for an equilibrium reaction is the ratio of the product of the molar concentration of products to the product of the molar concentration of the reactants, each raised to the power of their stoichiometric coefficient in the overall balanced equilibrium reaction. For a general equilibrium reaction, aA + bB ⇄ cC+dD , the equilibrium constant will be represented as: K = [C] c [D] d [A] a [B] b The instability constant is reciprocal of the formation constant for an equilibrium reaction. The relation between these two is shown as follows: K inst = 1 K form Here, K inst is the instability constant and K form is the formation constant.
The equilibria that corresponds to K inst for each of the given complex ions and the equations for K inst are to be written. Concept Introduction: According to the law of chemical equilibrium , the equilibrium constant for an equilibrium reaction is the ratio of the product of the molar concentration of products to the product of the molar concentration of the reactants, each raised to the power of their stoichiometric coefficient in the overall balanced equilibrium reaction. For a general equilibrium reaction, aA + bB ⇄ cC+dD , the equilibrium constant will be represented as: K = [C] c [D] d [A] a [B] b The instability constant is reciprocal of the formation constant for an equilibrium reaction. The relation between these two is shown as follows: K inst = 1 K form Here, K inst is the instability constant and K form is the formation constant.
Solution Summary: The author explains that the equilibrium constant for an equilibrium reaction is the ratio of the molar concentration of products to the product of their stoichiometric coefficient.
Definition Definition Number that is expressed before molecules, ions, and atoms such that it balances out the number of components present on either section of the equation in a chemical reaction. Stoichiometric coefficients can be a fraction or a whole number and are useful in determining the mole ratio among the reactants and products. In any equalized chemical equation, the number of components on either side of the equation will be the same.
Chapter 17, Problem 103RQ
Interpretation Introduction
Interpretation:
The equilibria that corresponds to Kinst for each of the given complex ions and the equations for Kinst are to be written.
Concept Introduction:
According to the law of chemical equilibrium, the equilibrium constant for an equilibrium reaction is the ratio of the product of the molar concentration of products to the product of the molar concentration of the reactants, each raised to the power of their stoichiometric coefficient in the overall balanced equilibrium reaction.
For a general equilibrium reaction, aA + bB ⇄cC+dD, the equilibrium constant will be represented as:
K = [C]c[D]d[A]a[B]b
The instability constant is reciprocal of the formation constant for an equilibrium reaction. The relation between these two is shown as follows:
Kinst=1Kform
Here, Kinst is the instability constant and Kform is the formation constant.
Predict the major organic product(s) of the following reactions. Indicate which of the following mechanisms is in operation: SN1, SN2, E1, or E2.
(c)
(4pts)
Mechanism:
heat
(E1)
CH3OH
+
1.5pts each
_E1 _ (1pt)
Br
CH3OH
(d)
(4pts)
Mechanism:
SN1
(1pt)
(e)
(3pts)
1111 I
H
10
Ill!!
H
LDA
THF (solvent)
Mechanism: E2
(1pt)
NC
(f)
Bri!!!!!
CH3
NaCN
(3pts)
acetone
Mechanism: SN2
(1pt)
(SN1)
-OCH3
OCH3
1.5pts each
2pts for either product
1pt if incorrect
stereochemistry
H
Br
(g)
“,、
(3pts)
H
CH3OH
+21
Mechanism:
SN2
(1pt)
H
CH3
2pts
1pt if incorrect
stereochemistry
H
2pts
1pt if incorrect
stereochemistry
A mixture of butyl acrylate and 4'-chloropropiophenone has been taken for proton NMR analysis. Based on this proton NMR, determine the relative percentage of each compound in the mixture
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell