THERMODYNAMICS: ENG APPROACH LOOSELEAF
9th Edition
ISBN: 9781266084584
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 16.6, Problem 89RP
To determine
The amount of heat released per kg of carbon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
One Kmol of C8H18 is burned with 100% air containing 25 Kmol of O2. Determine the air-fuel ratio for this combustion process.
Using Hess' Law, calculate for the heat of combustion of a
1.5 liter propene (C3H6) at 14.5 psi and 80.6°F that is
completely burned in air. Assume that all the water
produced during the reaction is in liquid state.
The standard enthalpy of formation of propene, C3H6 is
+20.6 kJ/mol.
The heats of formation of CO₂(g) and H₂O(l) are -394 kJ/mol
and -285.8 kJ/, respectively.
Q1) A constant volume tank contain 1 mole ofC7H14 and 12 mole of O2 gas at a temperature of 25 °C and 1 bar. The contents of the tank is ignited and C7H14is burned completely and final products temperature is found to be 1700 K. Determine the heat transfer during this process. ( take dalta Ho = -47800 kJ/kg).
Chapter 16 Solutions
THERMODYNAMICS: ENG APPROACH LOOSELEAF
Ch. 16.6 - Why is the criterion for chemical equilibrium...Ch. 16.6 - Write three different KPrelations for reacting...Ch. 16.6 - Is a wooden table in chemical equilibrium with the...Ch. 16.6 - A reaction chamber contains a mixture of CO2, CO,...Ch. 16.6 - A reaction chamber contains a mixture of N2and N...Ch. 16.6 - A reaction chamber contains a mixture of CO2, CO,...Ch. 16.6 - Which element is more likely to dissociate into...Ch. 16.6 - Prob. 8PCh. 16.6 - Prob. 9PCh. 16.6 - Prob. 10P
Ch. 16.6 - Prob. 11PCh. 16.6 - Prob. 12PCh. 16.6 - Prob. 13PCh. 16.6 - Prob. 14PCh. 16.6 - Prob. 15PCh. 16.6 - Prob. 16PCh. 16.6 - Prob. 17PCh. 16.6 - Prob. 18PCh. 16.6 - Prob. 19PCh. 16.6 - Prob. 20PCh. 16.6 - Prob. 21PCh. 16.6 - Prob. 22PCh. 16.6 - Prob. 23PCh. 16.6 - Determine the equilibrium constant KP for the...Ch. 16.6 - Prob. 26PCh. 16.6 - Prob. 27PCh. 16.6 - Carbon monoxide is burned with 100 percent excess...Ch. 16.6 - Prob. 30PCh. 16.6 - Prob. 31PCh. 16.6 - Estimate KP for the following equilibrium reaction...Ch. 16.6 - Prob. 33PCh. 16.6 - A mixture of 3 mol of N2, 1 mol of O2, and 0.1 mol...Ch. 16.6 - Prob. 35PCh. 16.6 - Prob. 36PCh. 16.6 - Prob. 37PCh. 16.6 - Prob. 38PCh. 16.6 - Prob. 40PCh. 16.6 - What is the equilibrium criterion for systems that...Ch. 16.6 - Prob. 43PCh. 16.6 - Prob. 44PCh. 16.6 - Prob. 45PCh. 16.6 - Prob. 47PCh. 16.6 - Prob. 48PCh. 16.6 - Prob. 51PCh. 16.6 - Prob. 52PCh. 16.6 - Prob. 53PCh. 16.6 - Prob. 54PCh. 16.6 - Prob. 55PCh. 16.6 - Prob. 56PCh. 16.6 - Prob. 58PCh. 16.6 - Prob. 59PCh. 16.6 - Prob. 60PCh. 16.6 - Prob. 61PCh. 16.6 - Using the Henrys constant data for a gas dissolved...Ch. 16.6 - Prob. 63PCh. 16.6 - Prob. 64PCh. 16.6 - Prob. 65PCh. 16.6 - Prob. 66PCh. 16.6 - A liquid-vapor mixture of refrigerant-134a is at...Ch. 16.6 - Prob. 68PCh. 16.6 - Prob. 69PCh. 16.6 - An oxygennitrogen mixture consists of 30 kg of...Ch. 16.6 - Prob. 71PCh. 16.6 - Prob. 72PCh. 16.6 - Prob. 73PCh. 16.6 - Prob. 74PCh. 16.6 - Prob. 75PCh. 16.6 - Prob. 76PCh. 16.6 - An ammoniawater absorption refrigeration unit...Ch. 16.6 - Prob. 78PCh. 16.6 - Prob. 79PCh. 16.6 - Prob. 80PCh. 16.6 - One lbmol of refrigerant-134a is mixed with 1...Ch. 16.6 - Prob. 82RPCh. 16.6 - Prob. 83RPCh. 16.6 - Prob. 84RPCh. 16.6 - Prob. 85RPCh. 16.6 - Prob. 88RPCh. 16.6 - Prob. 89RPCh. 16.6 - Prob. 90RPCh. 16.6 - Prob. 91RPCh. 16.6 - Prob. 92RPCh. 16.6 - A constant-volume tank contains a mixture of 1 mol...Ch. 16.6 - Prob. 94RPCh. 16.6 - Prob. 95RPCh. 16.6 - Prob. 96RPCh. 16.6 - Prob. 97RPCh. 16.6 - Prob. 99RPCh. 16.6 - Consider a glass of water in a room at 25C and 100...Ch. 16.6 - Prob. 101RPCh. 16.6 - Prob. 102RPCh. 16.6 - Prob. 105RPCh. 16.6 - Prob. 106RPCh. 16.6 - Prob. 107RPCh. 16.6 - Prob. 108RPCh. 16.6 - Prob. 109FEPCh. 16.6 - Prob. 110FEPCh. 16.6 - Prob. 111FEPCh. 16.6 - Prob. 112FEPCh. 16.6 - Prob. 113FEPCh. 16.6 - Prob. 114FEPCh. 16.6 - Propane C3H8 is burned with air, and the...Ch. 16.6 - Prob. 116FEPCh. 16.6 - Prob. 117FEPCh. 16.6 - The solubility of nitrogen gas in rubber at 25C is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A piston-cylinder arrangement initially contains 0.002 kmol of H, and 0.01 kmol of O, at 298 K and l atm. The mixture is ignited and burns adiabatically at constant pressure. Determine the final temperature assum- ing the products contain only H20 and the excess reactant. Also deter- mine the work done during the process. Sketch the process on H-T and P-V coordinates.arrow_forwardLiquid octane at 25°C and 0,1MPA is burned in 96% theoretical air at 25°C. The exit temperature is 600K. How much energy is emitted to the environment? (4.19x10°kJ/kmol)arrow_forwardCheck Your Understanding The combustion of naphthalene (CHs), which re- leases 5150.1 kJ/mol, is often used to calibrate calorimeters. A 1.05-g sample of naph- thalene is burned in a calorimeter, producing a temperature rise of 3.86°C. Burning a 1.83-g sample of coal in the same calorimeter causes a temperature change of 4.90°C. What is the energy density of the coal?arrow_forward
- Determine the adiabatic flame temperature (K) for a mixture of methane and 200% theoretical air that reacts completely in a steady-flow process at 1 atm. The methane and air enter the reaction at 298 K.arrow_forwardA volume of 10 m3 of air, at 20 ° C and 1 atm, contains 90% RH of acetone. Isothermal compression is carried out to a volume of 0.5 m3. The condensed acetone will burn at 25 ° C and 1 atm. The heat obtained will be used to evaporate refrigerant 134a at 200 kPa. Determine the mass of the refrigerant that can evaporate if all the heat that comes from the combustion of this acetone is used.arrow_forwardC,Hs is burned in an engine with a fuel-rich air-fuel ratio. Dry analysis of the exhaust gives the following volume percents: CO, 14.95%, C,H, 0.75%, CO 0%. H = 0%, O, 0%, with the rest being N. Higher heating value of this fuel is Quav 46.9 MJ/kg. Write the balanced chemical equation for one mole of this fuel at these conditions Calculate: (a) Air-fuel ratio. (b) Equivalence ratio. (c) Lower heating value of fuel. [MJ/kg] (d) Energy released when one kg of this fuel is burned in the engine with a combustion efficiency of 98%. [MJ]arrow_forward
- Ethanol Fuel C2H6O is burned with atmospheric air in a stoichiometric ratio. The mole fraction of H2O in the products is: Select one: O a. 0.857 O b. 0.1843 O c. 0.5415 O d. 0.6124arrow_forwardQl:- C4HS is burned in an engine with a fuel-rich air-fuel ratio. Dry analysis of the exhaust gives the following volume percents: COz 14.95%, C4HS 0.75%, CO 0%, Hz 0%, Oz 0%, with the rest being Nz. Higher heating value of this fuel is QHHV = 46.9 MJ/kg. Write the balanced chemical equation for one mole of this fuel at these conditions. Calculate: (a) Air-fuel ratio. (b) Equivalence ratio. (c) Lower heating value of the fuel. [MJ/kg] (d) The energy released when one kg of this fuel is burned in the engine with a combustion efficiency of 98%. [MJ]arrow_forward5. One Kmol of C3H1S is burned with 100% air containing 25 Kmol of O2. Determine the air- fuel ratio for this combustion process.arrow_forward
- Question No. 11: One kmol of octane C8H18 is burned with air that contains 20kmol of O2. Assuming the product contains only CO2, H20, 02and N2, determine the mol number of each gas in the products and the air-fuel ratio for this combustion process.arrow_forwardAn unknown amount of propane Fuel having a chemical formula C3H8 is burned with an unknown amount of air in a four-cylinder engine. The analysis of the engine exhaust gives the resulting reaction: 5.5 moles CO2, 18.87 moles H20, unknown moles 02, unknown moles N2, 8.8 moles CO and 0.2 moles H2: The number of moles of the products is: Select one: O a. 201.2 O b. 97.2 O c. 121.9 O d. 145.9 O e. 98.7arrow_forwardLiquid propane (C 3 H 8 ) enters a combustion chamber at 25 °C at a rate of 0.05 kg/min where it is mixed and burned with theoretical air that enters the combustion chamber at 7 °C. an analysis of combustion gases reveals that all the hydrogen in the fuel burns to H 2 O but only but only 90% of carbon burn to CO 2 with the remaining 10% forming Co if the exit temperature of combustion gases is 1500 K (a) the mass flow rate of air and (b) the rate of heat transfer from the combustion chamberarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License