Concept explainers
(a)
The logarithm equilibrium constant for the reaction at 1440 R.
Compare the results for the values of
(a)

Answer to Problem 15P
The logarithm equilibrium constant for the reaction at 1440 R is
The equilibrium constant obtained from the equilibrium constants of Table A-28 at 1440Ris
Explanation of Solution
Express the standard-state Gibbs function change.
Here, the Gibbs function of components
Write the equation to calculate the natural logarithms of equilibrium constant for the chemical equilibrium of ideal-gas mixtures.
Here, universal gas constant is
Write the equation to calculate the equilibrium constant for the chemical equilibrium of ideal-gas mixtures.
Conclusion:
From the equilibrium reaction, the values of
Refer Table A-26, obtain the values of
Refer Table A-22, obtain the value of
Refer Table A-22, obtain the value of
Refer Table A-19E, obtain the value of
Refer Table A-19E, obtain the value of
Refer Table A-23, obtain the value of
Refer Table A-23, obtain the value of
Substitute 1 for
Substitute
Substitute
Thus, the equilibrium constant obtained from the equilibrium reaction at 1440R is
Convert the temperature from Rankine to Kelvin.
Refer Table A-28, “Natural logarithms of the equilibrium constant” obtain the equilibrium constant for the reaction by interpolating for the temperature of 800 K as
Substitute
Thus, the equilibrium constant obtained from the table A-28 at 1440 R is
Refer Table A-28 “Natural logarithms of the equilibrium constant”, obtain the equilibrium constant for the dissociation reaction
The value obtained for equilibrium constant at 1440R from the definition of the equilibrium constant is
(b)
The logarithm equilibrium constant for the reaction at 3960 R.
Compare the results for the values of
(b)

Answer to Problem 15P
The logarithm equilibrium constant for the reaction at 3960 R is
The equilibrium constant obtained from the equilibrium constants of Table A-28 at 3960 R is.
Explanation of Solution
Express the standard-state Gibbs function change.
Here, the Gibbs function of components
Write the equation to calculate the natural logarithms of equilibrium constant for the chemical equilibrium of ideal-gas mixtures.
Here, universal gas constant is
Write the equation to calculate the equilibrium constant for the chemical equilibrium of ideal-gas mixtures.
Conclusion:
From the equilibrium reaction, the values of
Refer to Table A-26; obtain the values of
Refer to Table A-22, obtain the value of
Refer to Table A-22, obtain the value of
Refer to Table A-19E, obtain the value of
Refer to Table A-19E, obtain the value of
Refer to Table A-23, obtain the value of
Refer to Table A-23, obtain the value of
Substitute 1 for
Substitute
Substitute
Thus, the equilibrium constant obtained from the equilibrium reaction at 3960 R is
Convert the temperature from Rankine to Kelvin.
Refer Table A-28, “Natural logarithms of the equilibrium constant” obtain the equilibrium constant for the reaction by interpolating for the temperature of 2200 K as
Substitute
Thus, the equilibrium constant obtained from the table A-28 at3960 R is
The value obtained for equilibrium constant at 3960R from the definition of the equilibrium constant is
Want to see more full solutions like this?
Chapter 16 Solutions
THERMODYNAMICS: ENG APPROACH LOOSELEAF
- (read image)arrow_forward(◉ Home - my.uah.edu Homework#5 MasteringEngineering Mastering X + 8 https://session.engineering-mastering.pearson.com/myct/itemView?assignmentProblemID=18992148&offset=nextarrow_forward(◉ Home - my.uah.edu Homework#5 MasteringEngineering Mastering X + 8 https://session.engineering-mastering.pearson.com/myct/itemView?assignmentProblemID=18992144&offset=nextarrow_forwardCalculate the forces in members BC, BG & FG of the truss shown using the Method of Sections. For your answer, provide atruss diagram of the calculated member forces and indicate whether the member is in Tension (+) or Compression (-)arrow_forwardSelect the speed, feed and depth of the cut to turn wrought, low carbon steel (hardness of 200 BHN) on lathe with AISI tool material of HSS M2 or M3. (Hint: refer to Chapter 21 for recommended parameters).arrow_forwardOnly question 1&2arrow_forwardOnly question 3&4arrow_forwardThe enthalpy of fusion for water is 6.01 kJ/mol. Calculate the entropy change for 1.0 mole of ice melting to form liquid at 273 Karrow_forwardCalculate the entropy change for 1.00 mol of an ideal gas expanding isothermally from a volume of 24.4 L to 48.8 L.arrow_forwardDetermine the endurance limit.arrow_forwardWater enters an adiabatic nozzle steadily at 500 kPa and 300˚C with a mass flow rate of 6000 kg/h and leaves at 100 kPa and 45 m/s. The inlet area of the nozzle is 40 cm2. Take the Cp of CO2 to be 4.2 kJ/kgK and the specific volume of water to 0.001 m3/kg. Determine the inlet velocity and the exit temperature.arrow_forwardWater enters the constant 130 mm inside-diameter tubes of a boiler at 7 MPa and 65˚C and leaves the tubes at 6 MPa and 450˚C with a velocity of 80 m/s. Calculate the velocity of the water at the tube inlet and the inlet volume flow rate. Hint: the mass flow rate remains constant.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill EducationControl Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY